On the convergence of iterative sequences for a family of nonexpansive mappings and inverse-strongly monotone mappings.
Si estende un risultato di N. Suzuki sulla convergenza della serie di Neumann per un operatore compatto in uno spazio di Banach.
Let be a convex subset of a complete convex metric space , and and be two selfmappings on . In this paper it is shown that if the sequence of Ishikawa iterations associated with and converges, then its limit point is the common fixed point of and . This result extends and generalizes the corresponding results of Naimpally and Singh [6], Rhoades [7] and Hicks and Kubicek [3].
Let X be a nonempty set of cardinality at most and T be a selfmap of X. Our main theorem says that if each periodic point of T is a fixed point under T, and T has a fixed point, then there exist a metric d on X and a lower semicontinuous map ϕ :X→ ℝ ₊ such that d(x,Tx) ≤ ϕ(x) - ϕ(Tx) for all x∈ X, and (X,d) is separable. Assuming CH (the Continuum Hypothesis), we deduce that (X,d) is compact.
We study the covering dimension of the fixed point set of lower semicontinuous multifunctions of which many values can be non-closed or non-convex. An application to variational inequalities is presented.
An existence theorem for the cauchy problem (*) ẋ ∈ ext F(t,x), x(t₀) = x₀, in banach spaces is proved, under assumptions which exclude compactness. Moreover, a type of density of the solution set of (*) in the solution set of ẋ ∈ f(t,x), x(t₀) = x₀, is established. The results are obtained by using an improved version of the baire category method developed in [8]-[10].