Displaying 201 – 220 of 466

Showing per page

A Note on the Measure of Solvability

D. Caponetti, G. Trombetta (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

Let X be an infinite-dimensional Banach space. The measure of solvability ν(I) of the identity operator I is equal to 1.

A note on the super-additive and sub-additive transformations of aggregation functions: The multi-dimensional case

Fateme Kouchakinejad, Alexandra Šipošová (2017)

Kybernetika

For an aggregation function A we know that it is bounded by A * and A * which are its super-additive and sub-additive transformations, respectively. Also, it is known that if A * is directionally convex, then A = A * and A * is linear; similarly, if A * is directionally concave, then A = A * and A * is linear. We generalize these results replacing the directional convexity and concavity conditions by the weaker assumptions of overrunning a super-additive function and underrunning a sub-additive function, respectively.

A note on variational-type inequalities for (η,θ,δ)-pseudomonotone-type set-valued mappings in nonreflexive Banach spaces

Magdalena Nockowska-Rosiak (2013)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper the existence of solutions to variational-type inequalities problems for (η,θ,δ)- pseudomonotone-type set-valued mappings in nonreflexive Banach spaces introduced in [4] is considered. Presented theorem does not require a compact set-valued mapping, but requires a weaker condition 'locally bounded' for the mapping.

A parabolic quasilinear problem for linear growth functionals.

Fuensanta Andreu, Vincent Caselles, José María Mazón (2002)

Revista Matemática Iberoamericana

We prove existence and uniqueness of solutions for the Dirichlet problem for quasilinear parabolic equations in divergent form for which the energy functional has linear growth.

Currently displaying 201 – 220 of 466