A note on some fixed point results.
The proofs of Theorems 2.1, 2.2 and 2.3 from [Olatinwo M.O., Some results on multi-valued weakly jungck mappings in b-metric space, Cent. Eur. J. Math., 2008, 6(4), 610–621] base on faulty evaluations. We give here correct but weaker versions of these theorems.
Let X be an infinite-dimensional Banach space. The measure of solvability ν(I) of the identity operator I is equal to 1.
For an aggregation function we know that it is bounded by and which are its super-additive and sub-additive transformations, respectively. Also, it is known that if is directionally convex, then and is linear; similarly, if is directionally concave, then and is linear. We generalize these results replacing the directional convexity and concavity conditions by the weaker assumptions of overrunning a super-additive function and underrunning a sub-additive function, respectively.
In this paper the existence of solutions to variational-type inequalities problems for (η,θ,δ)- pseudomonotone-type set-valued mappings in nonreflexive Banach spaces introduced in [4] is considered. Presented theorem does not require a compact set-valued mapping, but requires a weaker condition 'locally bounded' for the mapping.
We prove existence and uniqueness of solutions for the Dirichlet problem for quasilinear parabolic equations in divergent form for which the energy functional has linear growth.