Displaying 21 – 40 of 2504

Showing per page

A convergent nonlinear splitting via orthogonal projection

Jan Mandel (1984)

Aplikace matematiky

We study the convergence of the iterations in a Hilbert space V , x k + 1 = W ( P ) x k , W ( P ) z = w = T ( P w + ( I - P ) z ) , where T maps V into itself and P is a linear projection operator. The iterations converge to the unique fixed point of T , if the operator W ( P ) is continuous and the Lipschitz constant ( I - P ) W ( P ) < 1 . If an operator W ( P 1 ) satisfies these assumptions and P 2 is an orthogonal projection such that P 1 P 2 = P 2 P 1 = P 1 , then the operator W ( P 2 ) is defined and continuous in V and satisfies ( I - P 2 ) W ( P 2 ) ( I - P 1 ) W ( P 1 ) .

A converse to the Lions-Stampacchia theorem

Emil Ernst, Michel Théra (2009)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we show that a linear variational inequality over an infinite dimensional real Hilbert space admits solutions for every nonempty bounded closed and convex set, if and only if the linear operator involved in the variational inequality is pseudo-monotone in the sense of Brezis.

A converse to the Lions-Stampacchia Theorem

Emil Ernst, Michel Théra (2008)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we show that a linear variational inequality over an infinite dimensional real Hilbert space admits solutions for every nonempty bounded closed and convex set, if and only if the linear operator involved in the variational inequality is pseudo-monotone in the sense of Brezis.

Currently displaying 21 – 40 of 2504