A common fixed point theorem satisfying integral type implicit relations.
We prove the existence of a contractive mapping on a weakly compact convex set in a Banach space that is fixed point free. This answers a long-standing open question.
We study the convergence of the iterations in a Hilbert space , where maps into itself and is a linear projection operator. The iterations converge to the unique fixed point of , if the operator is continuous and the Lipschitz constant . If an operator satisfies these assumptions and is an orthogonal projection such that , then the operator is defined and continuous in and satisfies .
In this paper we show that a linear variational inequality over an infinite dimensional real Hilbert space admits solutions for every nonempty bounded closed and convex set, if and only if the linear operator involved in the variational inequality is pseudo-monotone in the sense of Brezis.
In this paper we show that a linear variational inequality over an infinite dimensional real Hilbert space admits solutions for every nonempty bounded closed and convex set, if and only if the linear operator involved in the variational inequality is pseudo-monotone in the sense of Brezis.