Displaying 381 – 400 of 466

Showing per page

An Iterative Procedure for Solving Nonsmooth Generalized Equation

Marinov, Rumen Tsanev (2008)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 47H04, 65K10.In this article, we study a general iterative procedure of the following form 0 ∈ f(xk)+F(xk+1), where f is a function and F is a set valued map acting from a Banach space X to a linear normed space Y, for solving generalized equations in the nonsmooth framework. We prove that this method is locally Q-linearly convergent to x* a solution of the generalized equation 0 ∈ f(x)+F(x) if the set-valued map [f(x*)+g(·)−g(x*)+F(·)]−1 is Aubin continuous...

An Ulam stability result on quasi-b-metric-like spaces

Hamed H. Alsulami, Selma Gülyaz, Erdal Karapınar, İnci M. Erhan (2016)

Open Mathematics

In this paper a class of general type α-admissible contraction mappings on quasi-b-metric-like spaces are defined. Existence and uniqueness of fixed points for this class of mappings is discussed and the results are applied to Ulam stability problems. Various consequences of the main results are obtained and illustrative examples are presented.

Analysis of lumped parameter models for blood flow simulations and their relation with 1D models

Vuk Milišić, Alfio Quarteroni (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper provides new results of consistence and convergence of the lumped parameters (ODE models) toward one-dimensional (hyperbolic or parabolic) models for blood flow. Indeed, lumped parameter models (exploiting the electric circuit analogy for the circulatory system) are shown to discretize continuous 1D models at first order in space. We derive the complete set of equations useful for the blood flow networks, new schemes for electric circuit analogy, the stability criteria that guarantee...

Analysis of lumped parameter models for blood flow simulations and their relation with 1D models

Vuk Milišić, Alfio Quarteroni (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper provides new results of consistence and convergence of the lumped parameters (ODE models) toward one-dimensional (hyperbolic or parabolic) models for blood flow. Indeed, lumped parameter models (exploiting the electric circuit analogy for the circulatory system) are shown to discretize continuous 1D models at first order in space. We derive the complete set of equations useful for the blood flow networks, new schemes for electric circuit analogy, the stability criteria that...

Another fixed point theorem for nonexpansive potential operators

Biagio Ricceri (2012)

Studia Mathematica

We prove the following result: Let X be a real Hilbert space and let J: X → ℝ be a C¹ functional with a nonexpansive derivative. Then, for each r > 0, the following alternative holds: either J’ has a fixed point with norm less than r, or s u p | | x | | = r J ( x ) = s u p | | u | | L ² ( [ 0 , 1 ] , X ) = r 0 1 J ( u ( t ) ) d t .

Application of accretive operators theory to evolutive combined conduction, convection and radiation.

María Michaela Porzio, Oscar López-Pouso (2004)

Revista Matemática Iberoamericana

The accretive operators theory is employed for proving an existence theorem for the evolutive energy equations involving simultaneously conduction, stationary convection (in the sense that the velocity field is assumed to be time independent), and radiation. In doing that we need to use new existence results for elliptic linear problems with mixed boundary conditions and irregular data.

Currently displaying 381 – 400 of 466