Displaying 401 – 420 of 466

Showing per page

Applications of contractive-like mapping principles to fuzzy equations

Juan J. Nieto, Rosana Rodríguez López (2006)

Revista Matemática Complutense

We recall a recent extension of the classical Banach fixed point theorem to partially ordered sets and justify its applicability to the study of the existence and uniqueness of solution for fuzzy and fuzzy differential equations. To this purpose, we analyze the validity of some properties relative to sequences of fuzzy sets and fuzzy functions.

Applications of the spectral radius to some integral equations

Mirosława Zima (1995)

Commentationes Mathematicae Universitatis Carolinae

In the paper [13] we proved a fixed point theorem for an operator 𝒜 , which satisfies a generalized Lipschitz condition with respect to a linear bounded operator A , that is: m ( 𝒜 x - 𝒜 y ) A m ( x - y ) . The purpose of this paper is to show that the results obtained in [13], [14] can be extended to a nonlinear operator A .

Approximate controllability by birth control for a nonlinear population dynamics model

Otared Kavian, Oumar Traoré (2011)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we analyse an approximate controllability result for a nonlinear population dynamics model. In this model the birth term is nonlocal and describes the recruitment process in newborn individuals population, and the control acts on a small open set of the domain and corresponds to an elimination or a supply of newborn individuals. In our proof we use a unique continuation property for the solution of the heat equation and the Kakutani-Fan-Glicksberg fixed point theorem.

Approximate controllability by birth control for a nonlinear population dynamics model

Otared Kavian, Oumar Traoré (2011)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we analyse an approximate controllability result for a nonlinear population dynamics model. In this model the birth term is nonlocal and describes the recruitment process in newborn individuals population, and the control acts on a small open set of the domain and corresponds to an elimination or a supply of newborn individuals. In our proof we use a unique continuation property for the solution of the heat equation and the Kakutani-Fan-Glicksberg fixed point theorem.

Approximate weak invariance for semilinear differential inclusions in Banach spaces

Alina Lazu, Victor Postolache (2011)

Open Mathematics

In this paper we give a criterion for a given set K in Banach space to be approximately weakly invariant with respect to the differential inclusion x′(t) ∈ Ax(t) + F(x(t)), where A generates a C 0-semigroup and F is a given multi-function, using the concept of a tangent set to another set. As an application, we establish the relation between approximate solutions to the considered differential inclusion and solutions to the relaxed one, i.e., x′(t) ∈ Ax(t) + c o ¯ F(x(t)), without any Lipschitz conditions...

Approximating common fixed points of asymptotically nonexpansive mappings by composite algorithm in Banach spaces

Xiaolong Qin, Yongfu Su, Meijuan Shang (2007)

Open Mathematics

Let E be a uniformly convex Banach space and K a nonempty convex closed subset which is also a nonexpansive retract of E. Let T 1, T 2 and T 3: K → E be asymptotically nonexpansive mappings with k n, l n and j n. [1, ∞) such that Σn=1∞(k n − 1) < ∞, Σn=1∞(l n − 1) < ∞ and Σn=1∞(j n − 1) < ∞, respectively and F nonempty, where F = x ∈ K: T 1x = T 2x = T 3 x = xdenotes the common fixed points set of T 1, T 2 and T 3. Let α n, α′ n and α″ n be real sequences in (0, 1) and ∈ ≤ α n, α′ n, α″...

Currently displaying 401 – 420 of 466