Generalized first-order nonlinear evolution equations and generalized Yosida approximations based on -maximal monotonicity frameworks.
Let (Ω,μ) be a measure space, E be an arbitrary separable Banach space, be the dual equipped with the weak* topology, and g:Ω × E → ℝ be a Carathéodory function which is Lipschitz continuous on each ball of E for almost all s ∈ Ω. Put . Consider the integral functional G defined on some non--type Banach space X of measurable functions x: Ω → E. We present several general theorems on sufficient conditions under which any element γ ∈ X* of Clarke’s generalized gradient (multivalued C-subgradient)...
∗ The final version of this paper was sent to the editor when the author was supported by an ARC Small Grant of Dr. E. Tarafdar.Existence theorems of generalized variational inequalities and generalized complementarity problems are obtained in topological vector spaces for demi operators which are upper hemicontinuous along line segments in a convex set X. Fixed point theorems are also given in Hilbert spaces for set-valued operators T which are upper hemicontinuous along line segments in X such...
Our aim in this paper is mainly to prove some existence results for solutions of generalized variational-like inequalities with (η,h)-pseudo-monotone type III operators defined on non-compact sets in topological vector spaces.