Displaying 1161 – 1180 of 2510

Showing per page

Hysteresis memory preserving operators

Pavel Krejčí (1991)

Applications of Mathematics

The recent development of mathematical methods of investigation of problems with hysteresis has shown that the structure of the hysteresis memory plays a substantial role. In this paper we characterize the hysteresis operators which exhibit a memory effect of the Preisach type (memory preserving operators). We investigate their properties (continuity, invertibility) and we establish some relations between special classes of such operators (Preisach, Ishlinskii and Nemytskii operators). For a general...

Hysteresis operators in phase-field models of Penrose-fife type

Pavel Krejčí, Jürgen Sprekels (1998)

Applications of Mathematics

Phase-field systems as mathematical models for phase transitions have drawn a considerable attention in recent years. However, while they are suitable for capturing many of the experimentally observed phenomena, they are only of restricted value in modelling hysteresis effects occurring during phase transition processes. To overcome this shortcoming of existing phase-field theories, the authors have recently proposed a new approach to phase-field models which is based on the mathematical theory...

Implicit integral equations with discontinuous right-hand side

Filippo Cammaroto, Paolo Cubiotti (1997)

Commentationes Mathematicae Universitatis Carolinae

We consider the integral equation h ( u ( t ) ) = f ( I g ( t , x ) u ( x ) d x ) , with t [ 0 , 1 ] , and prove an existence theorem for bounded solutions where f is not assumed to be continuous.

Inertial forward-backward splitting method in Banach spaces with application to compressed sensing

Prasit Cholamjiak, Yekini Shehu (2019)

Applications of Mathematics

We propose a Halpern-type forward-backward splitting with inertial extrapolation step for finding a zero of the sum of accretive operators in Banach spaces. Strong convergence of the sequence of iterates generated by the method proposed is obtained under mild assumptions. We give some numerical results in compressed sensing to validate the theoretical analysis results. Our result is one of the few available inertial-type methods for zeros of the sum of accretive operators in Banach spaces.

Currently displaying 1161 – 1180 of 2510