Displaying 1361 – 1380 of 2510

Showing per page

Multi-valued operators and fixed point theorems in Banach algebras

Bapur Chandra Dhage (2004)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper, two multi-valued versions of the well-known hybrid fixed point theorem of Dhage [6] in Banach algebras are proved. As an application, an existence theorem for a certain differential inclusion in Banach algebras is also proved under the mixed Lipschitz and compactness type conditions.

Multivalued pseudo-contractive mappings defined on unbounded sets in Banach spaces

Claudio H. Morales (1992)

Commentationes Mathematicae Universitatis Carolinae

Let X be a real Banach space. A multivalued operator T from K into 2 X is said to be pseudo-contractive if for every x , y in K , u T ( x ) , v T ( y ) and all r > 0 , x - y ( 1 + r ) ( x - y ) - r ( u - v ) . Denote by G ( z , w ) the set { u K : u - w u - z } . Suppose every bounded closed and convex subset of X has the fixed point property with respect to nonexpansive selfmappings. Now if T is a Lipschitzian and pseudo-contractive mapping from K into the family of closed and bounded subsets of K so that the set G ( z , w ) is bounded for some z K and some w T ( z ) , then T has a fixed point in K .

New class of boundary value problem for nonlinear fractional differential equations involving Erdélyi-Kober derivative

Yacine Arioua, Maria Titraoui (2019)

Communications in Mathematics

In this paper, we introduce a new class of boundary value problem for nonlinear fractional differential equations involving the Erdélyi-Kober differential operator on an infinite interval. Existence and uniqueness results for a positive solution of the given problem are obtained by using the Banach contraction principle, the Leray-Schauder nonlinear alternative, and Guo-Krasnosel'skii fixed point theorem in a special Banach space. To that end, some examples are presented to illustrate the usefulness...

Currently displaying 1361 – 1380 of 2510