Some Remarks on the Böhme-Berger Bifurcation Theorem.
In this paper a new class of mappings, known as locally -strongly -accretive mappings, where and have special meanings, is introduced. This class of mappings constitutes a generalization of the well-known monotone mappings, accretive mappings and strongly -accretive mappings. Subsequently, the above notion is used to extend the results of Park and Park, Browder and Ray to locally -strongly -accretive mappings by using Caristi-Kirk fixed point theorem. In the sequel, we introduce the notion...
We consider continuous dependence of solutions on the right hand side for a semilinear operator equation Lx = ∇G(x), where L: D(L) ⊂ Y → Y (Y a Hilbert space) is self-adjoint and positive definite and G:Y → Y is a convex functional with superquadratic growth. As applications we derive some stability results and dependence on a functional parameter for a fourth order Dirichlet problem. Applications to P.D.E. are also given.
A parameter dependent nonlinear differential-delay equation in a Banach space is investigated. It is shown that if at the critical value of the parameter the problem satisfies a condition of linearized stability then the problem exhibits a stability which is uniform with respect to the whole range of the parameter values. The general theorem is applied to a diffusion system with applications in biology.
We study the superposition operator f on on the space ac 0 of sequences almost converging to zero. Conditions are derived for which f has a representation of the form f x = a+bx +g x, for all x ∈ ac 0 with a = f 0, b ∈ D(ac 0), g a superposition operator from ℓ∞ into I(ac 0), D(ac 0) = {z: zx ∈ ac 0 for all x ∈ ac 0}, and I(ac 0) the maximal ideal in ac 0. If f is generated by a function f of a real variable, then f is linear. We consider the conditions for which a bounded function f generates f...
Surjectivity results of Fredholm alternative type are obtained for nonlinear operator equations of the form , where is invertible, and satisfy various types of homogeneity conditions. We are able to answer some questions left open by Fuč’ık, Nečas, Souček, and Souček. We employ the concept of an -stably-solvable operator, related to nonlinear spectral theory methodology. Applications are given to a nonlinear Sturm-Liouville problem and a three point boundary value problem recently studied...