Displaying 21 – 40 of 205

Showing per page

Solutions faibles d'équations d'évolution dans les espaces de Hilbert

P. Bénilan, H. Brézis (1972)

Annales de l'institut Fourier

Les solutions d’équations d’évolution d u d t + A u f A est un opérateur maximal monotone d’un espace de Hilbert H , et f L 1 ( 0 , T , H ) sont étudiées dans le cas général en introduisant une notion de solution faible. Des résultats particuliers sont donnés lorsque H est de dimension finie ou plus généralement lorsque l’intérieur de D ( A ) est non vide.

Solvability of a forced autonomous Duffing's equation with periodic boundary conditions in the presence of damping

Chaitan P. Gupta (1993)

Applications of Mathematics

Let g : 𝐑 𝐑 be a continuous function, e : [ 0 , 1 ] 𝐑 a function in L 2 [ 0 , 1 ] and let c 𝐑 , c 0 be given. It is proved that Duffing’s equation u ' ' + c u ' + g ( u ) = e ( x ) , 0 < x < 1 , u ( 0 ) = u ( 1 ) , u ' ( 0 ) = u ' ( 1 ) in the presence of the damping term has at least one solution provided there exists an 𝐑 > 0 such that g ( u ) u 0 for | u | 𝐑 and 0 1 e ( x ) d x = 0 . It is further proved that if g is strictly increasing on 𝐑 with lim u - g ( u ) = - , lim u g ( u ) = and it Lipschitz continuous with Lipschitz constant α < 4 π 2 + c 2 , then Duffing’s equation given above has exactly one solution for every e L 2 [ 0 , 1 ] .

Solvability of a generalized third-order left focal problem at resonance in Banach spaces

Youwei Zhang (2013)

Mathematica Bohemica

This paper deals with the generalized nonlinear third-order left focal problem at resonance ( p ( t ) u ' ' ( t ) ) ' - q ( t ) u ( t ) = f ( t , u ( t ) , u ' ( t ) , u ' ' ( t ) ) , t ] t 0 , T [ , m ( u ( t 0 ) , u ' ' ( t 0 ) ) = 0 , n ( u ( T ) , u ' ( T ) ) = 0 , l ( u ( ξ ) , u ' ( ξ ) , u ' ' ( ξ ) ) = 0 , where the nonlinear term is a Carathéodory function and contains explicitly the first and second-order derivatives of the unknown function. The boundary conditions that we study are quite general, involve a linearity and include, as particular cases, Sturm-Liouville boundary conditions. Under certain growth conditions on the nonlinearity, we establish the existence of the nontrivial solutions by using the...

Solving variational inclusions by a multipoint iteration method under center-Hölder continuity conditions

Catherine Cabuzel, Alain Pietrus (2007)

Applicationes Mathematicae

We prove the existence of a sequence ( x k ) satisfying 0 f ( x k ) + i = 1 M a i f ( x k + β i ( x k + 1 - x k ) ) ( x k + 1 - x k ) + F ( x k + 1 ) , where f is a function whose second order Fréchet derivative ∇²f satifies a center-Hölder condition and F is a set-valued map from a Banach space X to the subsets of a Banach space Y. We show that the convergence of this method is superquadratic.

Some common fixed point theorems in normed linear spaces

Alfred Olufemi Bosede (2010)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

In this paper, we establish some generalizations to approximate common fixed points for selfmappings in a normed linear space using the modified Ishikawa iteration process with errors in the sense of Liu [10] and Rafiq [14]. We use a more general contractive condition than those of Rafiq [14] to establish our results. Our results, therefore, not only improve a multitude of common fixed point results in literature but also generalize some of the results of Berinde [3], Rhoades [15] and recent results...

Currently displaying 21 – 40 of 205