Page 1

Displaying 1 – 5 of 5

Showing per page

The associated tensor norm to ( q , p ) -absolutely summing operators on C ( K ) -spaces

J. A. López Molina, Enrique A. Sánchez-Pérez (1997)

Czechoslovak Mathematical Journal

We give an explicit description of a tensor norm equivalent on C ( K ) F to the associated tensor norm ν q p to the ideal of ( q , p ) -absolutely summing operators. As a consequence, we describe a tensor norm on the class of Banach spaces which is equivalent to the left projective tensor norm associated to ν q p .

The ideal of p-compact operators: a tensor product approach

Daniel Galicer, Silvia Lassalle, Pablo Turco (2012)

Studia Mathematica

We study the space of p-compact operators, p , using the theory of tensor norms and operator ideals. We prove that p is associated to / d p , the left injective associate of the Chevet-Saphar tensor norm d p (which is equal to g p ' ' ). This allows us to relate the theory of p-summing operators to that of p-compact operators. Using the results known for the former class and appropriate hypotheses on E and F we prove that p ( E ; F ) is equal to q ( E ; F ) for a wide range of values of p and q, and show that our results are sharp....

The impact of the Radon-Nikodym property on the weak bounded approximation property.

Eve Oja (2006)

RACSAM

A Banach space X is said to have the weak λ-bounded approximation property if for every separable reflexive Banach space Y and for every compact operator T : X → Y, there exists a net (Sα) of finite-rank operators on X such that supα ||TSα|| ≤ λ||T|| and Sα → IX uniformly on compact subsets of X.We prove the following theorem. Let X** or Y* have the Radon-Nikodym property; if X has the weak λ-bounded approximation property, then for every bounded linear operator T: X → Y, there exists a net (Sα)...

Topologies and bornologies determined by operator ideals, II

Ngai-Ching Wong (1994)

Studia Mathematica

Let be an operator ideal on LCS’s. A continuous seminorm p of a LCS X is said to be - continuous if Q ̃ p i n j ( X , X ̃ p ) , where X ̃ p is the completion of the normed space X p = X / p - 1 ( 0 ) and Q ̃ p is the canonical map. p is said to be a Groth()- seminorm if there is a continuous seminorm q of X such that p ≤ q and the canonical map Q ̃ p q : X ̃ q X ̃ p belongs to ( X ̃ q , X ̃ p ) . It is well known that when is the ideal of absolutely summing (resp. precompact, weakly compact) operators, a LCS X is a nuclear (resp. Schwartz, infra-Schwartz) space if and only if every continuous...

Currently displaying 1 – 5 of 5

Page 1