The search session has expired. Please query the service again.
We suggest a method of renorming of spaces of operators which are suitably approximable by sequences of operators from a given class. Further we generalize J. Johnsons’s construction of ideals of compact operators in the space of bounded operators and observe e.g. that under our renormings compact operators are -ideals in the: space of 2-absolutely summing operators or in the space of operators factorable through a Hilbert space.
Let be a Banach space. We give characterizations of when is a -ideal in for every Banach space in terms of nets of finite rank operators approximating weakly compact operators. Similar characterizations are given for the cases when is a -ideal in for every Banach space , when is a -ideal in for every Banach space , and when is a -ideal in for every Banach space .
We investigate sequences and operators via the unconditionally p-summable sequences. We characterize the unconditionally p-null sequences in terms of a certain tensor product and then prove that, for every 1 ≤ p < ∞, a subset of a Banach space is relatively unconditionally p-compact if and only if it is contained in the closed convex hull of an unconditionally p-null sequence.
Currently displaying 1 –
3 of
3