Can ever be amenable?
It is known that is not amenable for p = 1,2,∞, but whether or not is amenable for p ∈ (1,∞) ∖ 2 is an open problem. We show that, if is amenable for p ∈ (1,∞), then so are and . Moreover, if is amenable so is for any index set and for any infinite-dimensional -space E; in particular, if is amenable for p ∈ (1,∞), then so is . We show that is not amenable for p = 1,∞, but also that our methods fail us if p ∈ (1,∞). Finally, for p ∈ (1,2) and a free ultrafilter over ℕ, we exhibit...