Corrigendum to “Spectral analysis for rank one perturbations of diagonal operators in non-archimedean Hilbert space”
The existence of minimal and maximal fixed points for monotone operators defined on probabilistic Banach spaces is proved. We obtained sufficient conditions for the existence of coupled fixed point for mixed monotone condensing multivalued operators.
This paper is mainly concerned with extensions of the so-called Vishik functional calculus for analytic bounded linear operators to a class of unbounded linear operators on . For that, our first task consists of introducing a new class of linear operators denoted and next we make extensive use of such a new class along with the concept of convergence in the sense of resolvents to construct a functional calculus for a large class of unbounded linear operators.
We establish results on invariant approximation for fuzzy nonexpansive mappings defined on fuzzy metric spaces. As an application a result on the best approximation as a fixed point in a fuzzy normed space is obtained. We also define the strictly convex fuzzy normed space and obtain a necessary condition for the set of all -best approximations to contain a fixed point of arbitrary mappings. A result regarding the existence of an invariant point for a pair of commuting mappings on a fuzzy metric...
The paper introduces a notion of quasi-compact operator net on a Banach space. It is proved that quasi-compactness of a uniform Lotz-Räbiger net is equivalent to quasi-compactness of some operator . We prove that strong convergence of a quasi-compact uniform Lotz-Räbiger net implies uniform convergence to a finite-rank projection. Precompactness of operator nets is also investigated.