Generalized variational inequalities involving relaxed monotone mappings and nonexpansive mappings.
Our aim in this paper is mainly to prove some existence results for solutions of generalized variational-like inequalities with (η,h)-pseudo-monotone type III operators defined on non-compact sets in topological vector spaces.
We consider the eigenvalue problemin the case where the principal operator has rapid growth. By using a variational approach, we show that under certain conditions, almost all are eigenvalues.
We consider the eigenvalue problem in the case where the principal operator has rapid growth. By using a variational approach, we show that under certain conditions, almost all λ > 0 are eigenvalues.