Favorable classes of mappings and multimappings in nonlinear analysis and optimization.
An optimal control problem is studied, in which the state is required to remain in a compact set . A control feedback law is constructed which, for given , produces -optimal trajectories that satisfy the state constraint universally with respect to all initial conditions in . The construction relies upon a constraint removal technique which utilizes geometric properties of inner approximations of and a related trajectory tracking result. The control feedback is shown to possess a robustness...
An optimal control problem is studied, in which the state is required to remain in a compact set S. A control feedback law is constructed which, for given ε > 0, produces ε-optimal trajectories that satisfy the state constraint universally with respect to all initial conditions in S. The construction relies upon a constraint removal technique which utilizes geometric properties of inner approximations of S and a related trajectory tracking result. The control feedback is shown to possess a robustness...
First order characterizations of pseudoconvex functions are investigated in terms of generalized directional derivatives. A connection with the invexity is analysed. Well-known first order characterizations of the solution sets of pseudolinear programs are generalized to the case of pseudoconvex programs. The concepts of pseudoconvexity and invexity do not depend on a single definition of the generalized directional derivative.
2000 Mathematics Subject Classification: 90C46, 90C26, 26B25, 49J52.The constrained optimization problem min f(x), gj(x) ≤ 0 (j = 1,…p) is considered, where f : X → R and gj : X → R are nonsmooth functions with domain X ⊂ Rn. First-order necessary and first-order sufficient optimality conditions are obtained when gj are quasiconvex functions. Two are the main features of the paper: to treat nonsmooth problems it makes use of Dini derivatives; to obtain more sensitive conditions, it admits directionally...
Initially, second-order necessary optimality conditions and sufficient optimality conditions in terms of Hadamard type derivatives for the unconstrained scalar optimization problem , , are given. These conditions work with arbitrary functions , but they show inconsistency with the classical derivatives. This is a base to pose the question whether the formulated optimality conditions remain true when the “inconsistent” Hadamard derivatives are replaced with the “consistent” Dini derivatives. It...