Page 1 Next

Displaying 1 – 20 of 34

Showing per page

Saddle point criteria for second order η -approximated vector optimization problems

Anurag Jayswal, Shalini Jha, Sarita Choudhury (2016)

Kybernetika

The purpose of this paper is to apply second order η -approximation method introduced to optimization theory by Antczak [2] to obtain a new second order η -saddle point criteria for vector optimization problems involving second order invex functions. Therefore, a second order η -saddle point and the second order η -Lagrange function are defined for the second order η -approximated vector optimization problem constructed in this approach. Then, the equivalence between an (weak) efficient solution of the...

Second-order optimality conditions for nondominated solutions of multiobjective programming with C 1 , 1 data

Liping Liu, Pekka Neittaanmäki, Michal Křížek (2000)

Applications of Mathematics

We examine new second-order necessary conditions and sufficient conditions which characterize nondominated solutions of a generalized constrained multiobjective programming problem. The vector-valued criterion function as well as constraint functions are supposed to be from the class C 1 , 1 . Second-order optimality conditions for local Pareto solutions are derived as a special case.

Second-order sufficient condition for ˜ -stable functions

Dušan Bednařík, Karel Pastor (2007)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

The aim of our article is to present a proof of the existence of local minimizer in the classical optimality problem without constraints under weaker assumptions in comparisons with common statements of the result. In addition we will provide rather elementary and self-contained proof of that result.

Semigeodesics and the minimal time function

Chadi Nour (2006)

ESAIM: Control, Optimisation and Calculus of Variations

We study the Hamilton-Jacobi equation of the minimal time function in a domain which contains the target set. We generalize the results of Clarke and Nour [J. Convex Anal., 2004], where the target set is taken to be a single point. As an application, we give necessary and sufficient conditions for the existence of solutions to eikonal equations.

Semigeodesics and the minimal time function

Chadi Nour (2005)

ESAIM: Control, Optimisation and Calculus of Variations

We study the Hamilton-Jacobi equation of the minimal time function in a domain which contains the target set. We generalize the results of Clarke and Nour [J. Convex Anal., 2004], where the target set is taken to be a single point. As an application, we give necessary and sufficient conditions for the existence of solutions to eikonal equations.

Semipermeable surfaces for non-smooth differential inclusions

Andrzej Leśniewski, Tadeusz Rzeżuchowski (2006)

Mathematica Bohemica

We investigate the regularity of semipermeable surfaces along barrier solutions without the assumption of smoothness of the right-hand side of the differential inclusion. We check what can be said if the assumptions concern not the right-hand side itself but the cones it generates. We examine also the properties of families of sets with semipermeable boundaries.

Singular points of order k of Clarke regular and arbitrary functions

Luděk Zajíček (2012)

Commentationes Mathematicae Universitatis Carolinae

Let X be a separable Banach space and f a locally Lipschitz real function on X . For k , let Σ k ( f ) be the set of points x X , at which the Clarke subdifferential C f ( x ) is at least k -dimensional. It is well-known that if f is convex or semiconvex (semiconcave), then Σ k ( f ) can be covered by countably many Lipschitz surfaces of codimension k . We show that this result holds even for each Clarke regular function (and so also for each approximately convex function). Motivated by a resent result of A.D. Ioffe, we prove...

Slice convergence : stabilité et optimisation dans les espaces non réflexifs

Khalid El Hajioui, Driss Mentagui (2004)

ESAIM: Control, Optimisation and Calculus of Variations

Il est démontré par Mentagui [ESAIM : COCV 9 (2003) 297-315] que, dans le cas des espaces de Banach généraux, la convergence d’Attouch-Wets est stable par une classe d’opérations classiques de l’analyse convexe, lorsque les limites des suites d’ensembles et de fonctions satisfont certaines conditions de qualification naturelles. Ceci tombe en défaut avec la slice convergence. Dans cet article, nous établissons des conditions de qualification uniformes assurant la stabilité de la slice convergence...

Slice convergence: stabilité et optimisation dans les espaces non réflexifs

Khalid El Hajioui, Driss Mentagui (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Il est démontré par Mentagui [ESAIM: COCV9 (2003) 297-315] que, dans le cas des espaces de Banach généraux, la convergence d'Attouch-Wets est stable par une classe d'opérations classiques de l'analyse convexe, lorsque les limites des suites d'ensembles et de fonctions satisfont certaines conditions de qualification naturelles. Ceci tombe en défaut avec la slice convergence. Dans cet article, nous établissons des conditions de qualification uniformes assurant la stabilité de la slice convergence...

Smoothing a polyhedral convex function via cumulant transformation and homogenization

Alberto Seeger (1997)

Annales Polonici Mathematici

Given a polyhedral convex function g: ℝⁿ → ℝ ∪ +∞, it is always possible to construct a family g t > 0 which converges pointwise to g and such that each gₜ: ℝⁿ → ℝ is convex and infinitely often differentiable. The construction of such a family g t > 0 involves the concept of cumulant transformation and a standard homogenization procedure.

Some remarks on the space of differences of sublinear functions

Sven Bartels, Diethard Pallaschke (1994)

Applicationes Mathematicae

Two properties concerning the space of differences of sublinear functions D(X) for a real Banach space X are proved. First, we show that for a real separable Banach space (X,‖·‖) there exists a countable family of seminorms such that D(X) becomes a Fréchet space. For X = ℝ^n this construction yields a norm such that D(ℝ^n) becomes a Banach space. Furthermore, we show that for a real Banach space with a smooth dual every sublinear Lipschitzian function can be expressed by the Fenchel conjugate of...

Currently displaying 1 – 20 of 34

Page 1 Next