Metric subregularity of order q and the solving of inclusions
We consider some metric regularity properties of order q for set-valued mappings and we establish several characterizations of these concepts in terms of Hölder-like properties of the inverses of the mappings considered. In addition, we show that even if these properties are weaker than the classical notions of regularity for set-valued maps, they allow us to solve variational inclusions under mild assumptions.
Michael's theorem for Lipschitz cells in o-minimal structures
A version of Michael's theorem for multivalued mappings definable in o-minimal structures with M-Lipschitz cell values (M a common constant) is proven. Uniform equi-LCⁿ property for such families of cells is checked. An example is given showing that the assumption about the common Lipschitz constant cannot be omitted.
Monotonicity and differential properties of the value functions in optimal control.
Multiobjective problems of convex geometry.