The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We are concerned with the Lipschitz modulus of the optimal set mapping associated with canonically perturbed convex semi-infinite optimization problems. Specifically, the paper provides a lower and an upper bound for this modulus, both of them given exclusively in terms of the problem’s data. Moreover, the upper bound is shown to be the exact modulus when the number of constraints is finite. In the particular case of linear problems the upper bound (or exact modulus) adopts a notably simplified...
We are concerned with the Lipschitz modulus of the optimal set mapping
associated with canonically perturbed convex semi-infinite optimization
problems. Specifically, the paper provides a lower and an upper bound for
this modulus, both of them given exclusively in terms of the problem's data.
Moreover, the upper bound is shown to be the exact modulus when the number
of constraints is finite. In the particular case of linear problems the
upper bound (or exact modulus) adopts a notably simplified...
This paper deals with variational inclusions of the form 0 ∈ φ(x) + F(x) where φ is a single-valued function admitting a second order Fréchet derivative and F is a set-valued map from to the closed subsets of . When a solution z̅ of the previous inclusion satisfies some semistability properties, we obtain local superquadratic or cubic convergent sequences.
In the present paper, we study the problem of small-time local attainability (STLA) of a closed set. For doing this, we introduce a new concept of variations of the reachable set well adapted to a given closed set and prove a new attainability result for a general dynamical system. This provide our main result for nonlinear control systems. Some applications to linear and polynomial systems are discussed and STLA necessary and sufficient conditions are obtained when the considered set is a hyperplane....
In the present paper, we study the problem of small-time
local attainability (STLA) of a closed set.
For doing this, we introduce a new concept of variations of the
reachable set well adapted to a given closed set and prove a new
attainability result
for a general dynamical system. This provide our main result for nonlinear
control systems. Some applications to linear and polynomial systems are
discussed and STLA necessary and sufficient conditions are obtained
when the considered set...
Currently displaying 1 –
6 of
6