On the minimizers of the Möbius cross energy of links.
An optimization problem for the unilateral contact between a pseudoplate and a rigid obstacle is considered. The variable thickness of the pseudoplate plays the role of a control variable. The cost functional is a regular functional only in the smooth case. The existence of an optimal thickness is verified. The penalized optimal control problem is considered in the general case.
We study the flat region of stationary points of the functional under the constraint , where is a bounded domain in . Here is a function which is concave for small and convex for large, and is a given constant. The problem generalizes the classical minimal resistance body problems considered by Newton. We construct a family of partially flat radial solutions to the associated stationary problem when is a ball. We also analyze some other qualitative properties. Moreover, we show the...
In variational calculus, the minimality of a given functional under arbitrary deformations with fixed end-points is established through an analysis of the so called second variation. In this paper, the argument is examined in the context of constrained variational calculus, assuming piecewise differentiable extremals, commonly referred to as extremaloids. The approach relies on the existence of a fully covariant representation of the second variation of the action functional, based on a family of...
We propose, analyze, and compare several numerical methods for the computation of the deformation of a pressurized martensitic thin film. Numerical results have been obtained for the hysteresis of the deformation as the film transforms reversibly from austenite to martensite.
We propose, analyze, and compare several numerical methods for the computation of the deformation of a pressurized martensitic thin film. Numerical results have been obtained for the hysteresis of the deformation as the film transforms reversibly from austenite to martensite.
In this work we study the optimal control problem for a class of nonlinear time-delay systems via paratingent equation with delayed argument. We use an equivalence theorem between solutions of differential inclusions with time-delay and solutions of paratingent equations with delayed argument. We study the problem of optimal control which minimizes a certain cost function. To show the existence of optimal control, we use the main topological properties...
We consider an optimal control problem for a class of non-linear elliptic equations. A result of existence and uniqueness of the state equation is proven under weaker hypotheses than in the literature. We also prove the existence of an optimal control. Applications to some lubrication problems and numerical results are given.
We consider an optimal control problem for a class of non-linear elliptic equations. A result of existence and uniqueness of the state equation is proven under weaker hypotheses than in the literature. We also prove the existence of an optimal control. Applications to some lubrication problems and numerical results are given.
A control of the system of nonlinear Kármán's equations for a thin elastic plate with clamped edge is considered. The transversal loading plays the role of the control variable. The set of admissible controls is chosen in a way guaranteeing the unique solvability of the state function with respect to the control variable is proved. A disscussion of uniqueness of the optimal control and some necessary conditions of optimality are presented.
A control of the system of Kármán's equations for a thin elastic plate is considered. Existence of an optimal transversal load and optimal stress function, respectively, is proven. The set of admissible functions is chosen in a way guaranteeing the unique solvability of the state problem. The differentiability of the state function with respect to the control variable, uniqueness of the optimal control and some necessary conditions of optimality are discussed.
We shall deal with an optimal control problem for the deffection of a thin elastic plate. We consider the perpendicular load on the plate as the control variable. In contrast to the papers [1], [2], arbitrarily large loads are edmitted. As the unicity of a solution of the state equation is not guaranteed, we consider the cost functional defined on the set of admissible controls and states, and the state equation plays the role of the constraint. The existence of an optimal couple (i.e., control...