Generalized partially relaxed pseudomonotone variational inequalities and general auxiliary problem principle.
Here we consider the solvability based on iterative algorithms of the generalized variational inequalities and associated nonlinear equations.
∗ The final version of this paper was sent to the editor when the author was supported by an ARC Small Grant of Dr. E. Tarafdar.Existence theorems of generalized variational inequalities and generalized complementarity problems are obtained in topological vector spaces for demi operators which are upper hemicontinuous along line segments in a convex set X. Fixed point theorems are also given in Hilbert spaces for set-valued operators T which are upper hemicontinuous along line segments in X such...
Our aim in this paper is mainly to prove some existence results for solutions of generalized variational-like inequalities with (η,h)-pseudo-monotone type III operators defined on non-compact sets in topological vector spaces.
We consider the eigenvalue problemin the case where the principal operator has rapid growth. By using a variational approach, we show that under certain conditions, almost all are eigenvalues.
We consider the eigenvalue problem in the case where the principal operator has rapid growth. By using a variational approach, we show that under certain conditions, almost all λ > 0 are eigenvalues.