Generic well-posedness in minimization problems.
We consider minimization problems of the form where is a bounded convex open set, and the Borel function is assumed to be neither convex nor coercive. Under suitable assumptions involving the geometry of and the zero level set of , we prove that the viscosity solution of a related Hamilton–Jacobi equation provides a minimizer for the integral functional.
We consider minimization problems of the form where is a bounded convex open set, and the Borel function is assumed to be neither convex nor coercive. Under suitable assumptions involving the geometry of Ω and the zero level set of f, we prove that the viscosity solution of a related Hamilton–Jacobi equation provides a minimizer for the integral functional.
We provide a geometric rigidity estimate à la Friesecke-James-Müller for conformal matrices. Namely, we replace by an arbitrary compact set of conformal matrices, bounded away from and invariant under , and rigid motions by Möbius transformations.
After a short introduction on micromagnetism, we will focus on a scalar micromagnetic model. The problem, which is hyperbolic, can be viewed as a problem of Hamilton-Jacobi, and, similarly to conservation laws, it admits a kinetic formulation. We will use both points of view, together with tools from geometric measure theory, to prove the rectifiability of the singular set of micromagnetic configurations.
Si prova resistenza globale della soluzione di una equazione di Riccati collegata alla sintesi di un problema di controllo ottimale. Il problema considerato rappresenta la versione astratta di alcuni problemi governati da equazioni paraboliche con il controllo sulla frontiera.
We introduce an infinite-dimensional version of the Amann-Conley-Zehnder reduction for a class of boundary problems related to nonlinear perturbed elliptic operators with symmetric derivative. We construct global generating functions with finite auxiliary parameters, describing the solutions as critical points in a finite-dimensional space.
We consider a Canham − Helfrich − type variational problem defined over closed surfaces enclosing a fixed volume and having fixed surface area. The problem models the shape of multiphase biomembranes. It consists of minimizing the sum of the Canham − Helfrich energy, in which the bending rigidities and spontaneous curvatures are now phase-dependent, and a line tension penalization for the phase interfaces. By restricting attention to axisymmetric surfaces and phase distributions, we extend our previous...
The paper is concerned with a class of optimal blocking problems in the plane. We consider a time dependent set R(t) ⊂ ℝ2, described as the reachable set for a differential inclusion. To restrict its growth, a barrier Γ can be constructed, in real time. This is a one-dimensional rectifiable set which blocks the trajectories of the differential inclusion. In this paper we introduce a definition of “regular strategy”, based on a careful classification of blocking arcs. Moreover, we derive local and...
The paper is concerned with a class of optimal blocking problems in the plane. We consider a time dependent set R(t) ⊂ ℝ2, described as the reachable set for a differential inclusion. To restrict its growth, a barrier Γ can be constructed, in real time. This is a one-dimensional rectifiable set which blocks the trajectories of the differential inclusion. In this paper we introduce a definition of “regular strategy”, based on a careful classification...