Displaying 61 – 80 of 155

Showing per page

Exact controllability of a pluridimensional coupled problem.

Serge Nicaise (1992)

Revista Matemática de la Universidad Complutense de Madrid

We set a coupled boundary value problem between two domains of different dimension. The first one is the unit cube of Rn, n C [2,3], with a crack and the second one is the crack. this problem comes from Ciarlet et al. (1989), that obtained an analogous coupled problem. We show that the solution has singularities due to the crack. As in Grisvard (1989), we adapt the Hilbert uniqueness method of J.-L. Lions (1968,1988) in order to obtain the exact controllability of the associated wave equation with...

Exact controllability to the trajectories of the heat equation with Fourier boundary conditions: the semilinear case

Enrique Fernández-Cara, Manuel González-Burgos, Sergio Guerrero, Jean-Pierre Puel (2006)

ESAIM: Control, Optimisation and Calculus of Variations

This paper is concerned with the global exact controllability of the semilinear heat equation (with nonlinear terms involving the state and the gradient) completed with boundary conditions of the form y n + f ( y ) = 0 . We consider distributed controls, with support in a small set. The null controllability of similar linear systems has been analyzed in a previous first part of this work. In this second part we show that, when the nonlinear terms are locally Lipschitz-continuous and slightly superlinear, one...

Examples from the calculus of variations. I. Nondegenerate problems

Jan Chrastina (2000)

Mathematica Bohemica

The criteria of extremality for classical variational integrals depending on several functions of one independent variable and their derivatives of arbitrary orders for constrained, isoperimetrical, degenerate, degenerate constrained, and so on, cases are investigated by means of adapted Poincare-Cartan forms. Without ambitions on a noble generalizing theory, the main part of the article consists of simple illustrative examples within a somewhat naive point of view in order to obtain results resembling...

Examples of bifurcation of periodic solutions to variational inequalities in κ

Milan Kučera (2000)

Czechoslovak Mathematical Journal

A bifurcation problem for variational inequalities U ( t ) K , ( U ˙ ( t ) - B λ U ( t ) - G ( λ , U ( t ) ) , Z - U ( t ) ) 0 for all Z K , a.a. t 0 is studied, where K is a closed convex cone in κ , κ 3 , B λ is a κ × κ matrix, G is a small perturbation, λ a real parameter. The main goal of the paper is to simplify the assumptions of the abstract results concerning the existence of a bifurcation of periodic solutions developed in the previous paper and to give examples in more than three dimensional case.

Existence and boundedness of minimizers of a class of integral functionals

A. Mercaldo (2003)

Bollettino dell'Unione Matematica Italiana

In this paper we consider a class of integral functionals whose integrand satisfies growth conditions of the type f ( x , η , ξ ) a ( x ) | ξ | p ( 1 + | η | ) α - b 1 ( x ) | η | β 1 - g 1 ( x ) , f ( x , η , 0 ) b 2 ( x ) | η | β 2 + g 2 ( x ) , where 0 α < p , 1 β 1 < p , 0 β 2 < p , α + β i p , a x , b i x , g i x ( i = 1 , 2 ) are nonnegative functions satisfying suitable summability assumptions. We prove the existence and boundedness of minimizers of such a functional in the class of functions belonging to the weighted Sobolev space W 1 , p a , which assume a boundary datum u 0 W 1 , p a L Ω .

Existence and multiplicity of solutions for a class of damped vibration problems with impulsive effects

Jianwen Zhou, Yongkun Li (2011)

Annales Polonici Mathematici

Some sufficient conditions on the existence and multiplicity of solutions for the damped vibration problems with impulsive effects ⎧ u”(t) + g(t)u’(t) + f(t,u(t)) = 0, a.e. t ∈ [0,T ⎨ u(0) = u(T) = 0 ⎩ Δ u ' ( t j ) = u ' ( t j - u ' ( t ¯ j ) = I j ( u ( t j ) ) , j = 1,...,p, are established, where t = 0 < t < < t p < t p + 1 = T , g ∈ L¹(0,T;ℝ), f: [0,T] × ℝ → ℝ is continuous, and I j : , j = 1,...,p, are continuous. The solutions are sought by means of the Lax-Milgram theorem and some critical point theorems. Finally, two examples are presented to illustrate the effectiveness of our results....

Existence and regularity of minimizers of nonconvex integrals with p-q growth

Pietro Celada, Giovanni Cupini, Marcello Guidorzi (2007)

ESAIM: Control, Optimisation and Calculus of Variations

We show that local minimizers of functionals of the form Ω f ( D u ( x ) ) + g ( x , u ( x ) ) d x u u 0 + W 0 1 , p ( Ω ) , are locally Lipschitz continuous provided f is a convex function with p - q growth satisfying a condition of qualified convexity at infinity and g is Lipschitz continuous in u. As a consequence of this, we obtain an existence result for a related nonconvex functional.

Currently displaying 61 – 80 of 155