Displaying 1301 – 1320 of 2377

Showing per page

On an optimal control problem for a quasilinear parabolic equation

S. Farag, M. Farag (2000)

Applicationes Mathematicae

An optimal control problem governed by a quasilinear parabolic equation with additional constraints is investigated. The optimal control problem is converted to an optimization problem which is solved using a penalty function technique. The existence and uniqueness theorems are investigated. The derivation of formulae for the gradient of the modified function is explainedby solving the adjoint problem.

On an optimal shape design problem in conduction

José Carlos Bellido (2006)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we analyze a typical shape optimization problem in two-dimensional conductivity. We study relaxation for this problem itself. We also analyze the question of the approximation of this problem by the two-phase optimal design problems obtained when we fill out the holes that we want to design in the original problem by a very poor conductor, that we make to converge to zero.

On asymptotic exit-time control problems lacking coercivity

M. Motta, C. Sartori (2014)

ESAIM: Control, Optimisation and Calculus of Variations

The research on a class of asymptotic exit-time problems with a vanishing Lagrangian, begun in [M. Motta and C. Sartori, Nonlinear Differ. Equ. Appl. Springer (2014).] for the compact control case, is extended here to the case of unbounded controls and data, including both coercive and non-coercive problems. We give sufficient conditions to have a well-posed notion of generalized control problem and obtain regularity, characterization and approximation results for the value function of the problem....

On closure of the pre-images of families of mappings

Oleg Zaytsev (1998)

Commentationes Mathematicae Universitatis Carolinae

The closures of the pre-images associated with families of mappings in different topologies of normed spaces are considered. The question of finding a description of these closures by means of families of the same kind as original ones is studied. It is shown that for the case of the weak topology this question may be reduced to finding an appropriate closure of a given family. There are discussed various situations when the description may be obtained for the case of the strong topology. An example...

On complexity and motion planning for co-rank one sub-riemannian metrics

Cutberto Romero-Meléndez, Jean Paul Gauthier, Felipe Monroy-Pérez (2004)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we study the motion planning problem for generic sub-riemannian metrics of co-rank one. We give explicit expressions for the metric complexity (in the sense of Jean [10, 11]), in terms of the elementary invariants of the problem. We construct asymptotic optimal syntheses. It turns out that among the results we show, the most complicated case is the 3-dimensional. Besides the generic C case, we study some non-generic generalizations in the analytic case.

On complexity and motion planning for co-rank one sub-Riemannian metrics

Cutberto Romero-Meléndez, Jean Paul Gauthier, Felipe Monroy-Pérez (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we study the motion planning problem for generic sub-Riemannian metrics of co-rank one. We give explicit expressions for the metric complexity (in the sense of Jean [CITE]), in terms of the elementary invariants of the problem. We construct asymptotic optimal syntheses. It turns out that among the results we show, the most complicated case is the 3-dimensional. Besides the generic C∞ case, we study some non-generic generalizations in the analytic case.

On control problems of minimum time for Lagrangian systems similar to a swing. I. Convexity criteria for sets

Aldo Bressan, Monica Motta (1994)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

One establishes some convexity criteria for sets in R 2 . They will be applied in a further Note to treat the existence of solutions to minimum time problems for certain Lagrangian systems referred to two coordinates, one of which is used as a control. These problems regard the swing or the ski.

On control problems of minimum time for Lagrangian systems similar to a swing. II Application of convexity criteria to certain minimum time problems

Aldo Bressan, Monica Motta (1994)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

This Note is the Part II of a previous Note with the same title. One refers to holonomic systems Σ = A U with two degrees of freedom, where the part A can schemetize a swing or a pair of skis and U schemetizes whom uses A . The behaviour of U is characterized by a coordinate used as a control. Frictions and air resistance are neglected. One considers on Σ minimum time problems and one is interested in the existence of solutions. To this aim one determines a certain structural condition Γ which implies...

On convergence of gradient-dependent integrands

Martin Kružík (2007)

Applications of Mathematics

We study convergence properties of { v ( u k ) } k if v C ( m × n ) , | v ( s ) | C ( 1 + | s | p ) , 1 < p < + , has a finite quasiconvex envelope, u k u weakly in W 1 , p ( Ω ; m ) and for some g C ( Ω ) it holds that Ω g ( x ) v ( u k ( x ) ) d x Ω g ( x ) Q v ( u ( x ) ) d x as k . In particular, we give necessary and sufficient conditions for L 1 -weak convergence of { det u k } k to det u if m = n = p .

On convex functions in c0(w1).

Petr Hájek (1996)

Collectanea Mathematica

It is proved that no convex and Fréchet differentiable function on c0(w1), whose derivative is locally uniformly continuous, attains its minimum at a unique point.

On coupled thermoelastic vibration of geometrically nonlinear thin plates satisfying generalized mechanical and thermal conditions on the boundary and on the surface

Hans-Ullrich Wenk (1982)

Aplikace matematiky

The vibration problem in two variables is derived from the spatial situation (a plate as a three-dimensional body) on the basis of geometrically nonlinear plate theory (using Kármán's hypothesis) and coupled linear thermoelasticity. That leads to coupled strongly nonlinear two-dimensional equilibrium and heat conducting equations (under classical mechanical and thermal boundary conditions). For the generalized problem with subgradient conditions on the boundary and in the domain (including also...

On discontinuous quasi-variational inequalities

Liang-Ju Chu, Ching-Yang Lin (2007)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper, we derive a general theorem concerning the quasi-variational inequality problem: find x̅ ∈ C and y̅ ∈ T(x̅) such that x̅ ∈ S(x̅) and ⟨y̅,z-x̅⟩ ≥ 0, ∀ z ∈ S(x̅), where C,D are two closed convex subsets of a normed linear space X with dual X*, and T : X 2 X * and S : C 2 D are multifunctions. In fact, we extend the above to an existence result proposed by Ricceri [12] for the case where the multifunction T is required only to satisfy some general assumption without any continuity. Under a kind of Karmardian’s...

Currently displaying 1301 – 1320 of 2377