Optimal control of semilinear evolution inclusions via discrete approximations
In this paper we give examples of value functions in Bolza problem that are not bilateral or viscosity solutions and an example of a smooth value function that is even not a classic solution (in particular, it can be neither the viscosity nor the bilateral solution) of Hamilton-Jacobi-Bellman equation with upper semicontinuous Hamiltonian. Good properties of value functions motivate us to introduce approximate solutions of equations with such type Hamiltonians. We show that the value function is...
A design optimization problem for an elastic beam with a unilateral elastic foundation is analyzed. Euler-Bernoulli's model for the beam and Winkler's model for the foundation are considered. The state problem is represented by a nonlinear semicoercive problem of 4th order with mixed boundary conditions. The thickness of the beam and the stiffness of the foundation are optimized with respect to a cost functional. We establish solvability conditions for the state problem and study the existence of...
We minimize, with respect to shape, the moment of inertia of a turbine having the given lowest eigenfrequency of the torsional oscillations. The necessary conditions of optimality in conjunction with certain physical parameters admit a unique optimal design.
We minimize, with respect to shape, the moment of inertia of a turbine having the given lowest eigenfrequency of the torsional oscillations. The necessary conditions of optimality in conjunction with certain physical parameters admit a unique optimal design.
In this paper, we solve an optimal control problem using the calculus of variation. The system under consideration is a switched autonomous delay system that undergoes jumps at the switching times. The control variables are the instants when the switches occur, and a set of scalars which determine the jump amplitudes. Optimality conditions involving analytic expressions for the partial derivatives of a given cost function with respect to the control variables are derived using the calculus of variation....
We study in this paper a Lipschitz control problem associated to a semilinear second order ordinary differential equation with pointwise state constraints. The control acts as a coefficient of the state equation. The nonlinear part of the equation is governed by a Nemytskij operator defined by a Lipschitzian but possibly nonsmooth function. We prove the existence of optimal controls and obtain a necessary optimality conditions looking somehow to the Pontryagin’s maximum principle. These conditions...