Displaying 101 – 120 of 264

Showing per page

Nash equilibria for a model of traffic flow with several groups of drivers

Alberto Bressan, Ke Han (2012)

ESAIM: Control, Optimisation and Calculus of Variations

Traffic flow is modeled by a conservation law describing the density of cars. It is assumed that each driver chooses his own departure time in order to minimize the sum of a departure and an arrival cost. There are N groups of drivers, The i-th group consists of κi drivers, sharing the same departure and arrival costs ϕi(t),ψi(t). For any given population sizes κ1,...,κn, we prove the existence of a Nash equilibrium solution, where no driver can lower his own total cost by choosing a different departure...

Nash equilibrium for a multiobjective control problem related to wastewater management

Néstor García-Chan, Rafael Muñoz-Sola, Miguel Ernesto Vázquez-Méndez (2009)

ESAIM: Control, Optimisation and Calculus of Variations

This paper is concerned with mathematical modelling in the management of a wastewater treatment system. The problem is formulated as looking for a Nash equilibrium of a multiobjective pointwise control problem of a parabolic equation. Existence of solution is proved and a first order optimality system is obtained. Moreover, a numerical method to solve this system is detailed and numerical results are shown in a realistic situation posed in the estuary of Vigo (Spain).


Necessary and sufficient optimality conditions for elliptic control problems with finitely many pointwise state constraints

Eduardo Casas (2008)

ESAIM: Control, Optimisation and Calculus of Variations

The goal of this paper is to prove the first and second order optimality conditions for some control problems governed by semilinear elliptic equations with pointwise control constraints and finitely many equality and inequality pointwise state constraints. To carry out the analysis we formulate a regularity assumption which is equivalent to the first order optimality conditions. Though the presence of pointwise state constraints leads to a discontinuous adjoint state, we prove that the optimal...

Necessary and sufficient optimality conditions for elliptic control problems with finitely many pointwise state constraints

Eduardo Casas (2007)

ESAIM: Control, Optimisation and Calculus of Variations

The goal of this paper is to prove the first and second order optimality conditions for some control problems governed by semilinear elliptic equations with pointwise control constraints and finitely many equality and inequality pointwise state constraints. To carry out the analysis we formulate a regularity assumption which is equivalent to the first order optimality conditions. Though the presence of pointwise state constraints leads to a discontinuous adjoint state, we prove that the optimal control...

Néel and Cross-Tie wall energies for planar micromagnetic configurations

François Alouges, Tristan Rivière, Sylvia Serfaty (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We study a two-dimensional model for micromagnetics, which consists in an energy functional over S 2 -valued vector fields. Bounded-energy configurations tend to be planar, except in small regions which can be described as vortices (Bloch lines in physics). As the characteristic “exchange-length” tends to 0, they converge to planar divergence-free unit norm vector fields which jump along line singularities. We derive lower bounds for the energy, which are explicit functions of the jumps of the limit....

Néel and Cross-Tie Wall Energies for Planar Micromagnetic Configurations

François Alouges, Tristan Rivière, Sylvia Serfaty (2010)

ESAIM: Control, Optimisation and Calculus of Variations


We study a two-dimensional model for micromagnetics, which consists in an energy functional over S2-valued vector fields. Bounded-energy configurations tend to be planar, except in small regions which can be described as vortices (Bloch lines in physics). As the characteristic “exchange-length” tends to 0, they converge to planar divergence-free unit norm vector fields which jump along line singularities. We derive lower bounds for the energy, which are explicit functions of the jumps of the limit....

New regularity results and improved error estimates for optimal control problems with state constraints

Eduardo Casas, Mariano Mateos, Boris Vexler (2014)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we are concerned with a distributed optimal control problem governed by an elliptic partial differential equation. State constraints of box type are considered. We show that the Lagrange multiplier associated with the state constraints, which is known to be a measure, is indeed more regular under quite general assumptions. We discretize the problem by continuous piecewise linear finite elements and we are able to prove that, for the case of a linear equation, the order of convergence...

On an optimal control problem for a quasilinear parabolic equation

S. Farag, M. Farag (2000)

Applicationes Mathematicae

An optimal control problem governed by a quasilinear parabolic equation with additional constraints is investigated. The optimal control problem is converted to an optimization problem which is solved using a penalty function technique. The existence and uniqueness theorems are investigated. The derivation of formulae for the gradient of the modified function is explainedby solving the adjoint problem.

On regularization methods for the numerical solution of parabolic control problems with pointwise state constraints

Ira Neitzel, Fredi Tröltzsch (2009)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we study Lavrentiev-type regularization concepts for linear-quadratic parabolic control problems with pointwise state constraints. In the first part, we apply classical Lavrentiev regularization to a problem with distributed control, whereas in the second part, a Lavrentiev-type regularization method based on the adjoint operator is applied to boundary control problems with state constraints in the whole domain. The analysis for both classes of control problems is investigated and...

On regularization methods for the numerical solution of parabolic control problems with pointwise state constraints

Ira Neitzel, Fredi Tröltzsch (2008)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we study Lavrentiev-type regularization concepts for linear-quadratic parabolic control problems with pointwise state constraints. In the first part, we apply classical Lavrentiev regularization to a problem with distributed control, whereas in the second part, a Lavrentiev-type regularization method based on the adjoint operator is applied to boundary control problems with state constraints in the whole domain. The analysis for both classes of control problems is investigated and...

On the best observation of wave and Schrödinger equations in quantum ergodic billiards

Yannick Privat, Emmanuel Trélat, Enrique Zuazua (2012)

Journées Équations aux dérivées partielles

This paper is a proceedings version of the ongoing work [20], and has been the object of the talk of the second author at Journées EDP in 2012.In this work we investigate optimal observability properties for wave and Schrödinger equations considered in a bounded open set Ω n , with Dirichlet boundary conditions. The observation is done on a subset ω of Lebesgue measure | ω | = L | Ω | , where L ( 0 , 1 ) is fixed. We denote by 𝒰 L the class of all possible such subsets. Let T > 0 . We consider first the benchmark problem of maximizing...

On the Convergence of the Approximate Free Boundary for the Parabolic Obstacle Problem

Paola Pietra, Claudio Verdi (1985)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si discretizza il problema dell'ostacolo parabolico con differenze all'indietro nel tempo ed elementi finiti lineari nello spazio e si dimostrano stime dell'errore per la frontiera libera discreta.

Currently displaying 101 – 120 of 264