Displaying 121 – 140 of 143

Showing per page

Stochastic differential games involving impulse controls*

Feng Zhang (2011)

ESAIM: Control, Optimisation and Calculus of Variations

A zero-sum stochastic differential game problem on infinite horizon with continuous and impulse controls is studied. We obtain the existence of the value of the game and characterize it as the unique viscosity solution of the associated system of quasi-variational inequalities. We also obtain a verification theorem which provides an optimal strategy of the game.

Target achieving portfolio under model misspecification: quadratic optimization framework

Dariusz Zawisza (2012)

Applicationes Mathematicae

We incorporate model uncertainty into a quadratic portfolio optimization framework. We consider an incomplete continuous time market with a non-tradable stochastic factor. Two stochastic game problems are formulated and solved using Hamilton-Jacobi-Bellman-Isaacs equations. The proof of existence and uniqueness of a solution to the resulting semilinear PDE is also provided. The latter can be used to extend many portfolio optimization results.

The finite automata approaches in stringology

Jan Holub (2012)

Kybernetika

We present an overview of four approaches of the finite automata use in stringology: deterministic finite automaton, deterministic simulation of nondeterministic finite automaton, finite automaton as a model of computation, and compositions of finite automata solutions. We also show how the finite automata can process strings build over more complex alphabet than just single symbols (degenerate symbols, strings, variables).

Unbounded viscosity solutions of hybrid control systems

Guy Barles, Sheetal Dharmatti, Mythily Ramaswamy (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We study a hybrid control system in which both discrete and continuous controls are involved. The discrete controls act on the system at a given set interface. The state of the system is changed discontinuously when the trajectory hits predefined sets, namely, an autonomous jump set A or a controlled jump set C where controller can choose to jump or not. At each jump, trajectory can move to a different Euclidean space. We allow the cost functionals to be unbounded with certain growth and hence...

Value functions for Bolza problems with discontinuous Lagrangians and Hamilton-Jacobi inequalities

Gianni Dal Maso, Hélène Frankowska (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We investigate the value function of the Bolza problem of the Calculus of Variations
 V ( t , x ) = inf 0 t L ( y ( s ) , y ' ( s ) ) d s + ϕ ( y ( t ) ) : y W 1 , 1 ( 0 , t ; n ) , y ( 0 ) = x , with a lower semicontinuous Lagrangian L and a final cost ϕ , and show that it is locally Lipschitz for t>0 whenever L is locally bounded. It also satisfies Hamilton-Jacobi inequalities in a generalized sense. When the Lagrangian is continuous, then the value function is the unique lower semicontinuous solution to the corresponding Hamilton-Jacobi equation, while for discontinuous Lagrangian we characterize...

Viscosity solutions for an optimal control problem with Preisach hysteresis nonlinearities

Fabio Bagagiolo (2004)

ESAIM: Control, Optimisation and Calculus of Variations

We study a finite horizon problem for a system whose evolution is governed by a controlled ordinary differential equation, which takes also account of a hysteretic component: namely, the output of a Preisach operator of hysteresis. We derive a discontinuous infinite dimensional Hamilton–Jacobi equation and prove that, under fairly general hypotheses, the value function is the unique bounded and uniformly continuous viscosity solution of the corresponding Cauchy problem.

Viscosity solutions for an optimal control problem with Preisach hysteresis nonlinearities

Fabio Bagagiolo (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We study a finite horizon problem for a system whose evolution is governed by a controlled ordinary differential equation, which takes also account of a hysteretic component: namely, the output of a Preisach operator of hysteresis. We derive a discontinuous infinite dimensional Hamilton–Jacobi equation and prove that, under fairly general hypotheses, the value function is the unique bounded and uniformly continuous viscosity solution of the corresponding Cauchy problem.

Viscosity solutions of the Bellman equation for exit time optimal control problems with non-Lipschitz dynamics

Michael Malisoff (2001)

ESAIM: Control, Optimisation and Calculus of Variations

We study the Bellman equation for undiscounted exit time optimal control problems with fully nonlinear lagrangians and fully nonlinear dynamics using the dynamic programming approach. We allow problems whose non-Lipschitz dynamics admit more than one solution trajectory for some choices of open loop controls and initial positions. We prove a uniqueness theorem which characterizes the value functions of these problems as the unique viscosity solutions of the corresponding Bellman equations that satisfy...

Viscosity Solutions of the Bellman Equation for Exit Time Optimal Control Problems with Non-Lipschitz Dynamics

Michael Malisoff (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We study the Bellman equation for undiscounted exit time optimal control problems with fully nonlinear Lagrangians and fully nonlinear dynamics using the dynamic programming approach. We allow problems whose non-Lipschitz dynamics admit more than one solution trajectory for some choices of open loop controls and initial positions. We prove a uniqueness theorem which characterizes the value functions of these problems as the unique viscosity solutions of the corresponding Bellman equations that...

Viscosity solutions of the Isaacs equation οn an attainable set

Leszek Zaremba (1994)

Applicationes Mathematicae

We apply a modification of the viscosity solution concept introduced in [8] to the Isaacs equation defined on the set attainable from a given set of initial conditions. We extend the notion of a lower strategy introduced by us in [17] to a more general setting to prove that the lower and upper values of a differential game are subsolutions (resp. supersolutions) in our sense to the upper (resp. lower) Isaacs equation of the differential game. Our basic restriction is that the variable duration time...

Currently displaying 121 – 140 of 143