Previous Page 4

Displaying 61 – 76 of 76

Showing per page

Optimal design of cylindrical shells

Peter Nestler, Werner H. Schmidt (2010)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

The present paper studies an optimization problem of dynamically loaded cylindrical tubes. This is a problem of linear elasticity theory. As we search for the optimal thickness of the tube which minimizes the displacement under forces, this is a problem of shape optimization. The mathematical model is given by a differential equation (ODE and PDE, respectively); the mechanical problem is described as an optimal control problem. We consider both the stationary (time independent) and the transient...

Optimal impulsive control of delay systems

Florent Delmotte, Erik I. Verriest, Magnus Egerstedt (2008)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we solve an optimal control problem using the calculus of variation. The system under consideration is a switched autonomous delay system that undergoes jumps at the switching times. The control variables are the instants when the switches occur, and a set of scalars which determine the jump amplitudes. Optimality conditions involving analytic expressions for the partial derivatives of a given cost function with respect to the control variables are derived using the calculus of variation....

Optimal snapshot location for computing POD basis functions

Karl Kunisch, Stefan Volkwein (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The construction of reduced order models for dynamical systems using proper orthogonal decomposition (POD) is based on the information contained in so-called snapshots. These provide the spatial distribution of the dynamical system at discrete time instances. This work is devoted to optimizing the choice of these time instances in such a manner that the error between the POD-solution and the trajectory of the dynamical system is minimized. First and second order optimality systems are given. Numerical...

Optimal solutions of multivariate coupling problems

Ludger Rüschendorf (1995)

Applicationes Mathematicae

Some necessary and some sufficient conditions are established for the explicit construction and characterization of optimal solutions of multivariate transportation (coupling) problems. The proofs are based on ideas from duality theory and nonconvex optimization theory. Applications are given to multivariate optimal coupling problems w.r.t. minimal l p -type metrics, where fairly explicit and complete characterizations of optimal transportation plans (couplings) are obtained. The results are of interest...

Optimisation of time-scheduled regimen for anti-cancer drug infusion

Claude Basdevant, Jean Clairambault, Francis Lévi (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The chronotherapy concept takes advantage of the circadian rhythm of cells physiology in maximising a treatment efficacy on its target while minimising its toxicity on healthy organs. The object of the present paper is to investigate mathematically and numerically optimal strategies in cancer chronotherapy. To this end a mathematical model describing the time evolution of efficiency and toxicity of an oxaliplatin anti-tumour treatment has been derived. We then applied an optimal control technique...

Optimisation of time-scheduled regimen for anti-cancer drug infusion

Claude Basdevant, Jean Clairambault, Francis Lévi (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The chronotherapy concept takes advantage of the circadian rhythm of cells physiology in maximising a treatment efficacy on its target while minimising its toxicity on healthy organs. The object of the present paper is to investigate mathematically and numerically optimal strategies in cancer chronotherapy. To this end a mathematical model describing the time evolution of efficiency and toxicity of an oxaliplatin anti-tumour treatment has been derived. We then applied an optimal control...

Optimization and identification of nonlinear uncertain systems

Jong Yeoul Park, Yong Han Kang, Il Hyo Jung (2003)

Czechoslovak Mathematical Journal

In this paper we consider the optimal control of both operators and parameters for uncertain systems. For the optimal control and identification problem, we show existence of an optimal solution and present necessary conditions of optimality.

Optimization problems with convex epigraphs. Application to optimal control

Arkadii Kryazhimskii (2001)

International Journal of Applied Mathematics and Computer Science

For a class of infinite-dimensional minimization problems with nonlinear equality constraints, an iterative algorithm for finding global solutions is suggested. A key assumption is the convexity of the ''epigraph'', a set in the product of the image spaces of the constraint and objective functions. A convexification method involving randomization is used. The algorithm is based on the extremal shift control principle due to N.N. Krasovskii. An application to a problem of optimal control for a bilinear...

Optimum beam design via stochastic programming

Eva Žampachová, Pavel Popela, Michal Mrázek (2010)

Kybernetika

The purpose of the paper is to discuss the applicability of stochastic programming models and methods to civil engineering design problems. In cooperation with experts in civil engineering, the problem concerning an optimal design of beam dimensions has been chosen. The corresponding mathematical model involves an ODE-type constraint, uncertain parameter related to the material characteristics and multiple criteria. As a~result, a~multi-criteria stochastic nonlinear optimization model is obtained....

Currently displaying 61 – 76 of 76

Previous Page 4