On weak solutions to a viscoelasticity model
In this paper, the problems on purposefully controlling chaos for a three-dimensional quadratic continuous autonomous chaotic system, namely the chaotic Pehlivan-Uyaroglu system are investigated. The chaotic system, has three equilibrium points and more interestingly the equilibrium points have golden proportion values, which can generate single folded attractor. We developed an optimal control design, in order to stabilize the unstable equilibrium points of this system. Furthermore, we propose...
We propose a general approach for the numerical approximation of optimal control problems governed by a linear advection–diffusion equation, based on a stabilization method applied to the lagrangian functional, rather than stabilizing the state and adjoint equations separately. This approach yields a coherently stabilized control problem. Besides, it allows a straightforward a posteriori error estimate in which estimates of higher order terms are needless. Our a posteriori estimates stems from splitting...
We propose a general approach for the numerical approximation of optimal control problems governed by a linear advection–diffusion equation, based on a stabilization method applied to the Lagrangian functional, rather than stabilizing the state and adjoint equations separately. This approach yields a coherently stabilized control problem. Besides, it allows a straightforward a posteriori error estimate in which estimates of higher order terms are needless. Our a posteriori estimates stems from...
This paper concerns constrained dynamic optimization problems governed by delay control systems whose dynamic constraints are described by both delay-differential inclusions and linear algebraic equations. This is a new class of optimal control systems that, on one hand, may be treated as a specific type of variational problems for neutral functional-differential inclusions while, on the other hand, is related to a special class of differential-algebraic systems with a general delay-differential...
This paper concerns constrained dynamic optimization problems governed by delay control systems whose dynamic constraints are described by both delay-differential inclusions and linear algebraic equations. This is a new class of optimal control systems that, on one hand, may be treated as a specific type of variational problems for neutral functional-differential inclusions while, on the other hand, is related to a special class of differential-algebraic systems with a general delay-differential...
We study the numerical aspect of the optimal control of problems governed by a linear elliptic partial differential equation (PDE). We consider here the gas flow in porous media. The observed variable is the flow field we want to maximize in a given part of the domain or its boundary. The control variable is the pressure at one part of the boundary or the discharges of some wells located in the interior of the domain. The objective functional is a balance between the norm of the flux in the observation...
The regularity of Lagrange multipliers for state-constrained optimal control problems belongs to the basic questions of control theory. Here, we investigate bottleneck problems arising from optimal control problems for PDEs with certain mixed control-state inequality constraints. We show how to obtain Lagrange multipliers in Lp spaces for linear problems and give an application to linear parabolic optimal control problems.
The motivation for this work is the real-time solution of a standard optimal control problem arising in robotics and aerospace applications. For example, the trajectory planning problem for air vehicles is naturally cast as an optimal control problem on the tangent bundle of the Lie Group which is also a parallelizable riemannian manifold. For an optimal control problem on the tangent bundle of such a manifold, we use frame co-ordinates and obtain first-order necessary conditions employing calculus...
The motivation for this work is the real-time solution of a standard optimal control problem arising in robotics and aerospace applications. For example, the trajectory planning problem for air vehicles is naturally cast as an optimal control problem on the tangent bundle of the Lie Group SE(3), which is also a parallelizable Riemannian manifold. For an optimal control problem on the tangent bundle of such a manifold, we use frame co-ordinates and obtain first-order necessary conditions...
This paper is concerned with optimal design problems with a special assumption on the coefficients of the state equation. Namely we assume that the variations of these coefficients have a small amplitude. Then, making an asymptotic expansion up to second order with respect to the aspect ratio of the coefficients allows us to greatly simplify the optimal design problem. By using the notion of H-measures we are able to prove general existence theorems for small amplitude optimal design and to provide...