Ein einfacher Beweis für die Regularität der Lösungen gewisser zweidimensionaler Variationsprobleme unter freien Randbedingungen.
Page 1
Stefan HILDEBRANDT (1971)
Mathematische Annalen
Heiko von der Mosel (1999)
Annales de l'I.H.P. Analyse non linéaire
Séverine Rigot (2000/2001)
Séminaire Équations aux dérivées partielles
Paolo Marcellini (1996)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Elvira Mascolo, Anna Paola Migliorini (2003)
ESAIM: Control, Optimisation and Calculus of Variations
We prove Lipschitz continuity for local minimizers of integral functionals of the Calculus of Variations in the vectorial case, where the energy density depends explicitly on the space variables and has general growth with respect to the gradient. One of the models iswith a convex function with general growth (also exponential behaviour is allowed).
Elvira Mascolo, Anna Paola Migliorini (2010)
ESAIM: Control, Optimisation and Calculus of Variations
We prove Lipschitz continuity for local minimizers of integral functionals of the Calculus of Variations in the vectorial case, where the energy density depends explicitly on the space variables and has general growth with respect to the gradient. One of the models is with h a convex function with general growth (also exponential behaviour is allowed).
Lucio Boccardo, Luigi Orsina (1997)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Pietro Celada, Giovanni Cupini, Marcello Guidorzi (2007)
ESAIM: Control, Optimisation and Calculus of Variations
We show that local minimizers of functionals of the form , , are locally Lipschitz continuous provided f is a convex function with growth satisfying a condition of qualified convexity at infinity and g is Lipschitz continuous in u. As a consequence of this, we obtain an existence result for a related nonconvex functional.
Sidi Ammi, Moulay Rchid, Torres, Delfim F.M. (2007)
APPS. Applied Sciences
A. Cellina, A. Ferriero (2003)
Annales de l'I.H.P. Analyse non linéaire
Astruc, Thierry (1997)
Journal of Convex Analysis
Page 1