Page 1

Displaying 1 – 18 of 18

Showing per page

Partial regularity for anisotropic functionals of higher order

Menita Carozza, Antonia Passarelli di Napoli (2007)

ESAIM: Control, Optimisation and Calculus of Variations


We prove a C k , α partial regularity result for local minimizers of variational integrals of the type I ( u ) = Ω f ( D k u ( x ) ) d x , assuming that the integrand f satisfies (p,q) growth conditions.


Partial regularity of minimizers of higher order integrals with (p, q)-growth

Sabine Schemm (2011)

ESAIM: Control, Optimisation and Calculus of Variations

We consider higher order functionals of the form F [ u ] = Ω f ( D m u ) d x for u : n Ω N , where the integrand f : m ( n , N ) , m≥ 1 is strictly quasiconvex and satisfies a non-standard growth condition. More precisely we assume that f fulfills the (p, q)-growth condition γ | A | p f ( A ) L ( 1 + | A | q ) for all A m ( n , N ) , with γ, L > 0 and 1 < p q < min { p + 1 n , 2 n - 1 2 n - 2 p } . We study minimizers of the functional F [ · ] and prove a partial C loc m , α -regularity result.

Partial regularity of minimizers of higher order integrals with (p, q)-growth

Sabine Schemm (2011)

ESAIM: Control, Optimisation and Calculus of Variations

We consider higher order functionals of the form F [ u ] = Ω f ( D m u ) d x for u : n Ω N , where the integrand f : m ( n , N ) , m≥ 1 is strictly quasiconvex and satisfies a non-standard growth condition. More precisely we assume that f fulfills the (p, q)-growth condition γ | A | p f ( A ) L ( 1 + | A | q ) for all A m ( n , N ) , with γ, L > 0 and 1 < p q < min { p + 1 n , 2 n - 1 2 n - 2 p } . We study minimizers of the functional F [ · ] and prove a partial C loc m , α -regularity result.

Penalization of Dirichlet optimal control problems

Eduardo Casas, Mariano Mateos, Jean-Pierre Raymond (2009)

ESAIM: Control, Optimisation and Calculus of Variations

We apply Robin penalization to Dirichlet optimal control problems governed by semilinear elliptic equations. Error estimates in terms of the penalization parameter are stated. The results are compared with some previous ones in the literature and are checked by a numerical experiment. A detailed study of the regularity of the solutions of the PDEs is carried out.

Penalization of Dirichlet optimal control problems

Eduardo Casas, Mariano Mateos, Jean-Pierre Raymond (2008)

ESAIM: Control, Optimisation and Calculus of Variations

We apply Robin penalization to Dirichlet optimal control problems governed by semilinear elliptic equations. Error estimates in terms of the penalization parameter are stated. The results are compared with some previous ones in the literature and are checked by a numerical experiment. A detailed study of the regularity of the solutions of the PDEs is carried out.

Pointwise constrained radially increasing minimizers in the quasi-scalar calculus of variations

Luís Balsa Bicho, António Ornelas (2014)

ESAIM: Control, Optimisation and Calculus of Variations

We prove uniformcontinuity of radiallysymmetric vector minimizers uA(x) = UA(|x|) to multiple integrals ∫BRL**(u(x), |Du(x)|) dx on a ballBR ⊂ ℝd, among the Sobolev functions u(·) in A+W01,1 (BR, ℝm), using a jointlyconvexlscL∗∗ : ℝm×ℝ → [0,∞] with L∗∗(S,·) even and superlinear. Besides such basic hypotheses, L∗∗(·,·) is assumed to satisfy also a geometrical constraint, which we call quasi − scalar; the simplest example being the biradial case L∗∗(|u(x)|,|Du(x)|). Complete liberty is given for L∗∗(S,λ)...

P-order necessary and sufficient conditions for optimality in singular calculus of variations

Agnieszka Prusińska, Alexey Tret'yakov (2010)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

This paper is devoted to singular calculus of variations problems with constraint functional not regular at the solution point in the sense that the first derivative is not surjective. In the first part of the paper we pursue an approach based on the constructions of the p-regularity theory. For p-regular calculus of variations problem we formulate and prove necessary and sufficient conditions for optimality in singular case and illustrate our results by classical example of calculus of variations...

Problemi di regolarità per un nuovo tipo di funzionale del calcolo delle variazioni

Ennio De Giorgi, Giuseppe Congedo, Italo Tamanini (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si considerano questioni riguardanti la regolarità delle soluzioni di problemi di minimo di funzionali che coinvolgono sia termini di volume che di superficie. Si danno indicazioni sui risultati attesi in alcuni casi di notevole interesse, collegati a problemi di segmentazione di immagini e alla teoria dei cristalli liquidi.

Currently displaying 1 – 18 of 18

Page 1