Besicovitch-type properties of measures and submanifolds.
We obtain a blow-up theorem for regular submanifolds in the Heisenberg group, where intrinsic dilations are used. Main consequence of this result is an explicit formula for the density of (p+1)-dimensional spherical Hausdorff measure restricted to a p-dimensional submanifold with respect to the Riemannian surface measure. We explicitly compute this formula in some simple examples and we present a lower semicontinuity result for the spherical Hausdorff measure with respect to the weak convergence...
The existence of a singular curve in is proven, whose curvature can be extended to an function. The curve is the boundary of a two dimensional set, minimizing the length plus the integral over the set of the extension of the curvature. The existence of such a curve was conjectured by E. De Giorgi, during a conference held in Trento in July 1992.