The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper, we prove that integral -varifolds in codimension 1 with , , have quadratic tilt-excess decay for -almost all , and a strong maximum principle which states that these varifolds cannot be touched by smooth manifolds whose mean curvature is given by the weak mean curvature , unless the smooth manifold is locally contained in the support of .
In a recent paper A. Cianchi, N. Fusco, F. Maggi, and A. Pratelli have shown that, in the Gauss space, a set of given measure and almost minimal Gauss boundary measure is necessarily close to be a half-space.Using only geometric tools, we extend their result to all symmetric log-concave measures on the real line. We give sharp quantitative isoperimetric inequalities and prove that among sets of given measure and given asymmetry (distance to half line, i.e. distance to sets of minimal perimeter),...
Currently displaying 1 –
2 of
2