Ueber die Flächen, deren Gleichungen aus denen ebener Curven durch eine bestimmte Substitution hervorgehen Eckardt (1874) Mathematische Annalen
Ueber die Flächen vierten Grades, welche eine Doppelcurve zweiten Grades haben. C.F. Geiser (1869) Journal für die reine und angewandte Mathematik
Ueber die Formen der Curven dritter Ordnung. H. Durège (1873) Journal für die reine und angewandte Mathematik
Ueber die Hypothese der Parallelentheorie. R. Baltzer (1871) Journal für die reine und angewandte Mathematik
Ueber die Kugelflächen, welche den Poltetraedern einer Fläche zweiten Grades umschrieben werden können. Th. Reye (1874) Journal für die reine und angewandte Mathematik
Ueber die Malfattische Aufgabe für das sphärische Dreieck. F. Mertens (1873) Journal für die reine und angewandte Mathematik
Ueber die Methode, die Ordnungszahl einer Curve zu finden, welche durch zwei projectivische Curvenbüschel erzeugt wird. A. Olivier (1869) Journal für die reine und angewandte Mathematik
Ueber die qualitative Lage des Mittelpunktes der umgeschriebenen Hyperkugel im n -Simplex Miroslav Fiedler (1961) Commentationes Mathematicae Universitatis Carolinae
Ueber die Schnittpunktsysteme einer algebraischen Curve mit nicht-adjungirten Curven Noether (1879) Mathematische Annalen
Ueber die sogenannte Nicht-Euklidische Geometrie. Felix Klein (1871) Nachrichten von der Königl. Gesellschaft der Wissenschaften und der Georg-Augusts-Universität zu Göttingen
Ueber die Steinerschen Sätze von den Doppeltangenten der Curven vierten Grades. C.F. Geiser (1870) Journal für die reine und angewandte Mathematik
Ueber die Thatsachen, die der Geometrie zum Grunde liegen. H. Helmholtz (1868) Nachrichten von der Königl. Gesellschaft der Wissenschaften und der Georg-Augusts-Universität zu Göttingen
Ueber die verschiedenen Formen der Bedingungsgleichung, welche ausdrückt, dass sechs Punkte auf einem Kegelschnitte liegen. E. Hunyady (1877) Journal für die reine und angewandte Mathematik
Ueber diejenigen Flächen dritten Grades, auf denen sich drei gerade Linien in einem Punkte schneiden. (Aus einem Programm der Realschule I. Ordnung zu Chemnitz) Eckardt (1876) Mathematische Annalen