The possibility of extending factorization results to infinite Abelian groups.
It is proved that there is a unique metrizable simplex whose extreme points are dense. This simplex is homogeneous in the sense that for every 2 affinely homeomorphic faces and there is an automorphism of which maps onto . Every metrizable simplex is affinely homeomorphic to a face of . The set of extreme points of is homeomorphic to the Hilbert space . The matrices which represent are characterized.
For a real central arrangement , Salvetti introduced a construction of a finite complex Sal which is homotopy equivalent to the complement of the complexified arrangement in [Sal87]. For the braid arrangement , the Salvetti complex Sal serves as a good combinatorial model for the homotopy type of the configuration space of points in , which is homotopy equivalent to the space of k little -cubes. Motivated by the importance of little cubes in homotopy theory, especially in the study of...
The connectivity and measure theoretic properties of the skeleta of convex bodies in Euclidean space are discussed, together with some long standing problems and recent results.