Saddle point theorems on generalized convex spaces.
An analysis of all possible icosahedral viral capsids is proposed. It takes into account the diversity of coat proteins and their positioning in elementary pentagonal and hexagonal configurations, leading to definite capsid size. We show that the self-organization of observed capsids during their production implies a definite composition and configuration of elementary building blocks. The exact number of different protein dimers is related to the...
We define and investigate a generalization of the notion of convex compacta. Namely, for semiconvex combination in a semiconvex compactum we allow the existence of non-trivial loops connecting a point with itself. It is proved that any semiconvex compactum contains two non-empty convex compacta, the center and the weak center. The center is the largest compactum such that semiconvex combination induces a convex structure on it. The convex structure on the weak center does not necessarily coincide...
A coordinate cone in is an intersection of some coordinate hyperplanes and open coordinate half-spaces. A semi-monotone set is an open bounded subset of , definable in an o-minimal structure over the reals, such that its intersection with any translation of any coordinate cone is connected. This notion can be viewed as a generalization of convexity. Semi-monotone sets have a number of interesting geometric and combinatorial properties. The main result of the paper is that every semi-monotone...