Displaying 1561 – 1580 of 2516

Showing per page

Optimal packings for filled rings of circles

Dinesh B. Ekanayake, Manjula Mahesh Ranpatidewage, Douglas J. LaFountain (2020)

Applications of Mathematics

General circle packings are arrangements of circles on a given surface such that no two circles overlap except at tangent points. In this paper, we examine the optimal arrangement of circles centered on concentric annuli, in what we term rings. Our motivation for this is two-fold: first, certain industrial applications of circle packing naturally allow for filled rings of circles; second, any packing of circles within a circle admits a ring structure if one allows for irregular spacing of circles...

Optimality conditions for maximizers of the information divergence from an exponential family

František Matúš (2007)

Kybernetika

The information divergence of a probability measure P from an exponential family over a finite set is defined as infimum of the divergences of P from Q subject to Q . All directional derivatives of the divergence from are explicitly found. To this end, behaviour of the conjugate of a log-Laplace transform on the boundary of its domain is analysed. The first order conditions for P to be a maximizer of the divergence from are presented, including new ones when P  is not projectable to .

Optimisation hybride par colonies de fourmis pour le problème de découpe à deux dimensions

Alice Yalaoui, Chengbin Chu (2009)

RAIRO - Operations Research

Nous nous intéressons dans cet article au problème de découpe guillotine en deux dimensions noté 2BP/O/G. Il s'agit de découper un certain nombre de pièces rectangulaires dans un ensemble de plaques de matière première, elles même rectangulaires et identiques. Celles-ci sont disponibles en quantité illimitée. L'objectif est de minimiser le nombre de plaques utilisées pour satisfaire la demande, en appliquant une succession de coupes, dites guillotines, allant de bout en bout. Nous proposons une approche...

Pairs of convex bodies in a hyperspace over a Minkowski two-dimensional space joined by a unique metric segment

Agnieszka Bogdewicz, Jerzy Grzybowski (2009)

Banach Center Publications

Let ( , | | · | | ) be a Minkowski space with a unit ball and let ϱ H be the Hausdorff metric induced by | | · | | in the hyperspace of convex bodies (nonempty, compact, convex subsets of ℝ). R. Schneider [RSP] characterized pairs of elements of which can be joined by unique metric segments with respect to ϱ H B for the Euclidean unit ball Bⁿ. We extend Schneider’s theorem to the hyperspace ( ² , ϱ H ) over any two-dimensional Minkowski space.

Currently displaying 1561 – 1580 of 2516