Oprava k článku „Poznámka k otázce řešitelnosti jisté soustavy nerovností kladnými čísly‟
Alena Červená (1958)
Časopis pro pěstování matematiky
Pavle V. M. Blagojević, Benjamin Matschke, Günter M. Ziegler (2015)
Journal of the European Mathematical Society
We prove a “Tverberg type” multiple intersection theorem. It strengthens the prime case of the original Tverberg theorem from 1966, as well as the topological Tverberg theorem of Bárány et al. (1980), by adding color constraints. It also provides an improved bound for the (topological) colored Tverberg problem of Bárány & Larman (1992) that is tight in the prime case and asymptotically optimal in the general case. The proof is based on relative equivariant obstruction theory.
D. Niewinowska-Jacak (1982)
Applicationes Mathematicae
Irmina Herburt, Maria Moszyńska (2009)
Banach Center Publications
In 1989 R. Arnold proved that for every pair (A,B) of compact convex subsets of ℝ there is an Euclidean isometry optimal with respect to L₂ metric and if f₀ is such an isometry, then the Steiner points of f₀(A) and B coincide. In the present paper we solve related problems for metrics topologically equivalent to the Hausdorff metric, in particular for metrics for all p ≥ 2 and the symmetric difference metric.
Dinesh B. Ekanayake, Manjula Mahesh Ranpatidewage, Douglas J. LaFountain (2020)
Applications of Mathematics
General circle packings are arrangements of circles on a given surface such that no two circles overlap except at tangent points. In this paper, we examine the optimal arrangement of circles centered on concentric annuli, in what we term rings. Our motivation for this is two-fold: first, certain industrial applications of circle packing naturally allow for filled rings of circles; second, any packing of circles within a circle admits a ring structure if one allows for irregular spacing of circles...
James R. Van Dyke (2000)
Visual Mathematics
Szabó, Péter Gábor (2005)
Beiträge zur Algebra und Geometrie
František Matúš (2007)
Kybernetika
The information divergence of a probability measure from an exponential family over a finite set is defined as infimum of the divergences of from subject to . All directional derivatives of the divergence from are explicitly found. To this end, behaviour of the conjugate of a log-Laplace transform on the boundary of its domain is analysed. The first order conditions for to be a maximizer of the divergence from are presented, including new ones when is not projectable to .
V.T. Rajan (1994)
Discrete & computational geometry
L. STAMMLER (1989)
Beiträge zur Algebra und Geometrie = Contributions to algebra and geometry
Alice Yalaoui, Chengbin Chu (2009)
RAIRO - Operations Research
Nous nous intéressons dans cet article au problème de découpe guillotine en deux dimensions noté 2BP/O/G. Il s'agit de découper un certain nombre de pièces rectangulaires dans un ensemble de plaques de matière première, elles même rectangulaires et identiques. Celles-ci sont disponibles en quantité illimitée. L'objectif est de minimiser le nombre de plaques utilisées pour satisfaire la demande, en appliquant une succession de coupes, dites guillotines, allant de bout en bout. Nous proposons une approche...
M. A. Hernández-Cifre, P. J. Herrero Piñeyro (2007)
Revista Matemática Iberoamericana
G.M. Ziegler, N.E. Mnëv (1993)
Discrete & computational geometry
Elia, Michele (2003)
International Journal of Mathematics and Mathematical Sciences
Drenning, Shawn, Palagallo, Judith, Price, Thomas, Strichartz, Robert S. (2005)
Experimental Mathematics
Phan Thanh An (2005)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
Stromquist, Walter (2003)
The Electronic Journal of Combinatorics [electronic only]
Zhang, Yuqin, Fan, Yonghui (2005)
The Electronic Journal of Combinatorics [electronic only]
Conway, John H., Hardin, Ronald H., Sloane, Neil J.A. (1996)
Experimental Mathematics
Tibor Tarnai (1983)
Elemente der Mathematik