Displaying 1801 – 1820 of 2522

Showing per page

Shift inequalities of Gaussian type and norms of barycentres

F. Barthe, D. Cordero-Erausquin, M. Fradelizi (2001)

Studia Mathematica

We derive the equivalence of different forms of Gaussian type shift inequalities. This completes previous results by Bobkov. Our argument strongly relies on the Gaussian model for which we give a geometric approach in terms of norms of barycentres. Similar inequalities hold in the discrete setting; they improve the known results on the so-called isodiametral problem for the discrete cube. The study of norms of barycentres for subsets of convex bodies completes the exposition.

Simplices rarely contain their circumcenter in high dimensions

Jon Eivind Vatne (2017)

Applications of Mathematics

Acute triangles are defined by having all angles less than π / 2 , and are characterized as the triangles containing their circumcenter in the interior. For simplices of dimension n 3 , acuteness is defined by demanding that all dihedral angles between ( n - 1 ) -dimensional faces are smaller than π / 2 . However, there are, in a practical sense, too few acute simplices in general. This is unfortunate, since the acuteness property provides good qualitative features for finite element methods. The property of acuteness...

Six lonely runners.

Bohman, Tom, Holzman, Ron, Kleitman, Dan (2001)

The Electronic Journal of Combinatorics [electronic only]

Currently displaying 1801 – 1820 of 2522