Displaying 61 – 80 of 1463

Showing per page

A new algorithm for approximating the least concave majorant

Martin Franců, Ron Kerman, Gord Sinnamon (2017)

Czechoslovak Mathematical Journal

The least concave majorant, F ^ , of a continuous function F on a closed interval, I , is defined by F ^ ( x ) = inf { G ( x ) : G F , G concave } , x I . We present an algorithm, in the spirit of the Jarvis March, to approximate the least concave majorant of a differentiable piecewise polynomial function of degree at most three on I . Given any function F 𝒞 4 ( I ) , it can be well-approximated on I by a clamped cubic spline S . We show that S ^ is then a good approximation to F ^ . We give two examples, one to illustrate, the other to apply our algorithm.

A new convexity property that implies a fixed point property for L 1

Chris Lennard (1991)

Studia Mathematica

In this paper we prove a new convexity property for L₁ that resembles uniform convexity. We then develop a general theory that leads from the convexity property through normal structure to a fixed point property, via a theorem of Kirk. Applying this theory to L₁, we get the following type of normal structure: any convex subset of L₁ of positive diameter that is compact for the topology of convergence locally in measure, must have a radius that is smaller than its diameter. Indeed, a stronger result...

A new series of conjectures and open questions in optimization and matrix analysis

Jean-Baptiste Hiriart-Urruty (2009)

ESAIM: Control, Optimisation and Calculus of Variations

We present below a new series of conjectures and open problems in the fields of (global) Optimization and Matrix analysis, in the same spirit as our recently published paper [J.-B. Hiriart-Urruty, Potpourri of conjectures and open questions in Nonlinear analysis and Optimization. SIAM Review 49 (2007) 255–273]. With each problem come a succinct presentation, a list of specific references, and a view on the state of the art of the subject.

A new series of conjectures and open questions in optimization and matrix analysis

Jean-Baptiste Hiriart-Urruty (2008)

ESAIM: Control, Optimisation and Calculus of Variations

We present below a new series of conjectures and open problems in the fields of (global) Optimization and Matrix analysis, in the same spirit as our recently published paper [J.-B. Hiriart-Urruty, Potpourri of conjectures and open questions in Nonlinear analysis and Optimization. SIAM Review49 (2007) 255–273]. With each problem come a succinct presentation, a list of specific references, and a view on the state of the art of the subject.

A new type of orthogonality for normed planes

Horst Martini, Margarita Spirova (2010)

Czechoslovak Mathematical Journal

In this paper we introduce a new type of orthogonality for real normed planes which coincides with usual orthogonality in the Euclidean situation. With the help of this type of orthogonality we derive several characterizations of the Euclidean plane among all normed planes, all of them yielding also characteristic properties of inner product spaces among real normed linear spaces of dimensions d 3 .

A note on equality of functional envelopes

Martin Kružík (2003)

Mathematica Bohemica

We characterize generalized extreme points of compact convex sets. In particular, we show that if the polyconvex hull is convex in m × n , min ( m , n ) 2 , then it is constructed from polyconvex extreme points via sequential lamination. Further, we give theorems ensuring equality of the quasiconvex (polyconvex) and the rank-1 convex envelopes of a lower semicontinuous function without explicit convexity assumptions on the quasiconvex (polyconvex) envelope.

A note on formal power series

Xiao-Xiong Gan, Dariusz Bugajewski (2010)

Commentationes Mathematicae Universitatis Carolinae

In this note we investigate a relationship between the boundary behavior of power series and the composition of formal power series. In particular, we prove that the composition domain of a formal power series g is convex and balanced which implies that the subset 𝕏 ¯ g consisting of formal power series which can be composed by a formal power series g possesses such properties. We also provide a necessary and sufficient condition for the superposition operator T g to map 𝕏 ¯ g into itself or to map 𝕏 g into...

A note on how Rényi entropy can create a spectrum of probabilistic merging operators

Martin Adamčík (2019)

Kybernetika

In this paper we present a result that relates merging of closed convex sets of discrete probability functions respectively by the squared Euclidean distance and the Kullback-Leibler divergence, using an inspiration from the Rényi entropy. While selecting the probability function with the highest Shannon entropy appears to be a convincingly justified way of representing a closed convex set of probability functions, the discussion on how to represent several closed convex sets of probability functions...

Currently displaying 61 – 80 of 1463