Displaying 81 – 100 of 121

Showing per page

Convex hulls, Sticky particle dynamics and Pressure-less gas system

Octave Moutsinga (2008)

Annales mathématiques Blaise Pascal

We introduce a new condition which extends the definition of sticky particle dynamics to the case of discontinuous initial velocities u 0 with negative jumps. We show the existence of a stochastic process and a forward flow φ satisfying X s + t = φ ( X s , t , P s , u s ) and d X t = E [ u 0 ( X 0 ) / X t ] d t , where P s = P X s - 1 is the law of X s and u s ( x ) = E [ u 0 ( X 0 ) / X s = x ] is the velocity of particle x at time s 0 . Results on the flow characterization and Lipschitz continuity are also given.Moreover, the map ( x , t ) M ( x , t ) : = P ( X t x ) is the entropy solution of a scalar conservation law t M + x ( A ( M ) ) = 0 where the flux A represents the particles...

Convex ( L , M ) -fuzzy remote neighborhood operators

Hu Zhao, Li-Yan Jia, Gui-Xiu Chen (2024)

Kybernetika

In this paper, two kinds of remote neighborhood operators in ( L , M ) -fuzzy convex spaces are proposed, which are called convex ( L , M ) -fuzzy remote neighborhood operators. It is proved that these two kinds of convex ( L , M ) -fuzzy remote neighborhood operators can be used to characterize ( L , M ) -fuzzy convex structures. In addition, the lattice structures of two kinds of convex ( L , M ) -fuzzy remote neighborhood operators are also given.

Convex sets and inequalities.

Takahasi, Sin-Ei, Takahashi, Yasuji, Miyajima, Shizuo, Takagi, Hiroyuki (2005)

Journal of Inequalities and Applications [electronic only]

Convex universal fixers

Magdalena Lemańska, Rita Zuazua (2012)

Discussiones Mathematicae Graph Theory

In [1] Burger and Mynhardt introduced the idea of universal fixers. Let G = (V, E) be a graph with n vertices and G’ a copy of G. For a bijective function π: V(G) → V(G’), define the prism πG of G as follows: V(πG) = V(G) ∪ V(G’) and E ( π G ) = E ( G ) E ( G ' ) M π , where M π = u π ( u ) | u V ( G ) . Let γ(G) be the domination number of G. If γ(πG) = γ(G) for any bijective function π, then G is called a universal fixer. In [9] it is conjectured that the only universal fixers are the edgeless graphs K̅ₙ. In this work we generalize the concept of universal...

Convexes hyperboliques et fonctions quasisymétriques

Yves Benoist (2003)

Publications Mathématiques de l'IHÉS

Every bounded convex open set Ω of Rm is endowed with its Hilbert metric dΩ. We give a necessary and sufficient condition, called quasisymmetric convexity, for this metric space to be hyperbolic. As a corollary, when the boundary is real analytic, Ω is always hyperbolic. In dimension 2, this condition is: in affine coordinates, the boundary ∂Ω is locally the graph of a C1 strictly convex function whose derivative is quasisymmetric.

Currently displaying 81 – 100 of 121