A generalized plane wave metric
We prove that a locally symmetric and a null-complete Lorentz manifold is geodetically complete.
We estimate from below by geometric data the eigenvalues of the periodic Sturm-Liouville operator with potential given by the curvature of a closed curve.
A classical result of A. D. Alexandrov states that a connected compact smooth -dimensional manifold without boundary, embedded in , and such that its mean curvature is constant, is a sphere. Here we study the problem of symmetry of in a hyperplane in case satisfies: for any two points , on , with , the mean curvature at the first is not greater than that at the second. Symmetry need not always hold, but in this paper, we establish it under some additional condition for . Some variations...
In this note we continue a theme taken up in part I, see [Gzyl and Recht: The geometry on the class of probabilities (I). The finite dimensional case. Rev. Mat. Iberoamericana 22 (2006), 545-558], namely to provide a geometric interpretation of exponential families as end points of geodesics of a non-metric connection in a function space. For that we characterize the space of probability densities as a projective space in the class of strictly positive functions, and these will be regarded as a...
We discuss an analog of the Givental group action for the space of solutions of the commutativity equation. There are equivalent formulations in terms of cohomology classes on the Losev-Manin compactifications of genus moduli spaces; in terms of linear algebra in the space of Laurent series; in terms of differential operators acting on Gromov-Witten potentials; and in terms of multi-component KP tau-functions. The last approach is equivalent to the Losev-Polyubin classification that was obtained...