Displaying 281 – 300 of 776

Showing per page

A note on flat noncommutative connections

Tomasz Brzeziński (2012)

Banach Center Publications

It is proven that every flat connection or covariant derivative ∇ on a left A-module M (with respect to the universal differential calculus) induces a right A-module structure on M so that ∇ is a bimodule connection on M or M is a flat differentiable bimodule. Similarly a flat hom-connection on a right A-module M induces a compatible left A-action.

A note on generalized flag structures

Tomasz Rybicki (1998)

Annales Polonici Mathematici

Generalized flag structures occur naturally in modern geometry. By extending Stefan's well-known statement on generalized foliations we show that such structures admit distinguished charts. Several examples are included.

A Note on Hamiltonian Lie Group Actions and Massey Products

Zofia Stępień, Aleksy Tralle (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

We show that the property of having only vanishing triple Massey products in equivariant cohomology is inherited by the set of fixed points of hamiltonian circle actions on closed symplectic manifolds. This result can be considered in a more general context of characterizing homotopic properties of Lie group actions. In particular it can be viewed as a partial answer to a question posed by Allday and Puppe about finding conditions ensuring the "formality" of G-actions.

A note on n-ary Poisson brackets

Michor, Peter W., Vaisman, Izu (2000)

Proceedings of the 19th Winter School "Geometry and Physics"

An n -ary Poisson bracket (or generalized Poisson bracket) on the manifold M is a skew-symmetric n -linear bracket { , , } of functions which is a derivation in each argument and satisfies the generalized Jacobi identity of order n , i.e., σ S 2 n - 1 ( sign σ ) { { f σ 1 , , f σ n } , f σ n + 1 , , f σ 2 n - 1 } = 0 , S 2 n ...

Currently displaying 281 – 300 of 776