A Note on Curvature-like Invariants of Some Connections on Locally Decomposable Spaces
It is proven that every flat connection or covariant derivative ∇ on a left A-module M (with respect to the universal differential calculus) induces a right A-module structure on M so that ∇ is a bimodule connection on M or M is a flat differentiable bimodule. Similarly a flat hom-connection on a right A-module M induces a compatible left A-action.
Generalized flag structures occur naturally in modern geometry. By extending Stefan's well-known statement on generalized foliations we show that such structures admit distinguished charts. Several examples are included.
We show that the property of having only vanishing triple Massey products in equivariant cohomology is inherited by the set of fixed points of hamiltonian circle actions on closed symplectic manifolds. This result can be considered in a more general context of characterizing homotopic properties of Lie group actions. In particular it can be viewed as a partial answer to a question posed by Allday and Puppe about finding conditions ensuring the "formality" of G-actions.
An -ary Poisson bracket (or generalized Poisson bracket) on the manifold is a skew-symmetric -linear bracket of functions which is a derivation in each argument and satisfies the generalized Jacobi identity of order , i.e.,
We describe a new link between Perelman’s monotonicity formula for the reduced volume and ideas from optimal transport theory.