Some recent developments in the theory of properly embedded minimal surfaces in
Harold Rosenberg (1991/1992)
Séminaire Bourbaki
Dennis M. Deturck, Jerry L. Kazdan (1981)
Annales scientifiques de l'École Normale Supérieure
Finn, Robert, Lu, Jianan (1997)
Memoirs on Differential Equations and Mathematical Physics
Kinetsu Abe (1980)
Mathematische Annalen
Binh, T.Q., Tamássy, L., De, U.C., Tarafdar, M. (2002)
Mathematica Pannonica
E. Głodek (1971)
Colloquium Mathematicae
Pan, Ivan (2003)
Boletín de la Asociación Matemática Venezolana
Ian Porteous (1999)
Banach Center Publications
In this paper we review some of the concepts and results of V. I. Arnol’d [1] for curves in and extend them to curves and surfaces in .
T. Figiel (1972)
Colloquium Mathematicae
Elisa Gage Casini (2000)
Rendiconti del Seminario Matematico della Università di Padova
Vrancken, Luc (1992)
Publications de l'Institut Mathématique. Nouvelle Série
Miquel Llabrés, Agustí Reventós (1989)
Publicacions Matemàtiques
The first part of this paper is concerned with geometrical and cohomological properties of Lie flows on compact manifolds. Relations between these properties and the Euler class of the flow are given.The second part deals with 3-codimensional Lie flows. Using the classification of 3-dimensional Lie algebras we give cohomological obstructions for a compact manifold admits a Lie flow transversely modeled on a given Lie algebra.
Nicolescu, Liviu, Oprea, Teodor Vasile (2005)
Balkan Journal of Geometry and its Applications (BJGA)
Alena Vanžurová (1996)
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
Barbara Nelli, Harold Rosenberg (1997)
Annales de l'institut Fourier
We consider graphs of positive scalar or Gauss-Kronecker curvature over a punctured disk in Euclidean and hyperbolic -dimensional space and we obtain removable singularities theorems.
Andrew Swann (1997)
Archivum Mathematicum
Nearly-quaternionic Kähler manifolds of dimension at least are shown to be quaternionic Kähler. Restrictions on the covariant derivative of the fundamental four-form of a semi-quaternionic Kähler are also found.
Jarolím Bureš (1975)
Czechoslovak Mathematical Journal
Viktor L. Ginzburg (1992)
Mathematische Zeitschrift
Zejun Hu, Guosong Zhao (2005)
Banach Center Publications
In this note, we are concerned with the Kozlowski-Simon conjecture on ovaloids and prove that it is correct under additional conditions.
I. Barza, D. Ghisa, Stere Ianus (1998)
Publications de l'Institut Mathématique