3D-Darboux motions in 4-dimensional Euclidean space.
Karger, Adolf (1995)
Mathematica Pannonica
Włodzimierz Jelonek (2003)
Annales Polonici Mathematici
The aim of this paper is to give an easy explicit description of 3-K-contact structures on SO(3)-principal fibre bundles over Wolf quaternionic Kähler manifolds.
Bernhard Leeb (1995)
Inventiones mathematicae
Dao Qui Chao, Demeter Krupka (1999)
Mathematica Slovaca
Gabriel Eduard Vîlcu (2010)
Annales Polonici Mathematici
We study 3-submersions from a QR-hypersurface of a quaternionic Kähler manifold onto an almost quaternionic hermitian manifold. We also prove the non-existence of quaternionic submersions between quaternionic Kähler manifolds which are not locally hyper-Kähler.
Petrović-Torgašev, Miroslava (1999)
Novi Sad Journal of Mathematics
Miroslava Petrović-Torgašev (2002)
Kragujevac Journal of Mathematics
Miroslava Petrović-Torgašev, L. Verstraelen, Luc Vrancken (1996)
Publications de l'Institut Mathématique
Pierre Dazord (1983)
Publications du Département de mathématiques (Lyon)
Jaeman Kim (2006)
Czechoslovak Mathematical Journal
On a 4-dimensional anti-Kähler manifold, its zero scalar curvature implies that its Weyl curvature vanishes and vice versa. In particular any 4-dimensional anti-Kähler manifold with zero scalar curvature is flat.
Akio Hattori (1998)
Banach Center Publications
The aim of this article is to answer a question posed by J. Oprea in his talk at the Workshop "Homotopy and Geometry".
Peter Gilkey, Stana Nikčević (2013)
Publications de l'Institut Mathématique
Bĕlohlávková, Jana, Mikes̆ Joseph, Pokorna, Olga (1997)
General Mathematics
Thäle, C. (2008)
Surveys in Mathematics and its Applications
M. Prvanović (1977)
Publications de l'Institut Mathématique
Wojciech Kozłowski (2004)
Annales Polonici Mathematici
We investigate ∇-flat and pointwise-∇-flat functions on affine and Riemannian manifolds. We show that the set of all ∇-flat functions on (M,∇) is a ring which has interesting properties similar to the ring of polynomial functions.
M. Strake, G. Walschap (1989)
Manuscripta mathematica
David N. Pham (2016)
Archivum Mathematicum
A Lie version of Turaev’s -Frobenius algebras from 2-dimensional homotopy quantum field theory is proposed. The foundation for this Lie version is a structure we call a -quasi-Frobenius Lie algebra for a finite dimensional Lie algebra. The latter consists of a quasi-Frobenius Lie algebra together with a left -module structure which acts on via derivations and for which is -invariant. Geometrically, -quasi-Frobenius Lie algebras are the Lie algebra structures associated to symplectic...
T. Damour, S. Deser (1987)
Annales de l'I.H.P. Physique théorique
L. Vanhecke (1972)
Monatshefte für Mathematik