An isoperimetric comparison theorem.
A condition of Osserman type, called the φ-null Osserman condition, is introduced and studied in the context of Lorentz globally framed f-manifolds. An explicit example shows the naturality of this condition in the setting of Lorentz 𝓢-manifolds. We prove that a Lorentz 𝓢-manifold with constant φ-sectional curvature is φ-null Osserman, extending a well-known result in the case of Lorentz Sasaki space forms. Then we state a characterization of a particular class of φ-null Osserman 𝓢-manifolds....
We study the gradient flow for the total variation functional, which arises in image processing and geometric applications. We propose a variational inequality weak formulation for the gradient flow, and establish well-posedness of the problem by the energy method. The main idea of our approach is to exploit the relationship between the regularized gradient flow (characterized by a small positive parameter , and the minimal surface flow [21] and the prescribed mean curvature flow [16]. Since our...
We study the gradient flow for the total variation functional, which arises in image processing and geometric applications. We propose a variational inequality weak formulation for the gradient flow, and establish well-posedness of the problem by the energy method. The main idea of our approach is to exploit the relationship between the regularized gradient flow (characterized by a small positive parameter ε, see (1.7)) and the minimal surface flow [21] and the prescribed mean curvature flow [16]. Since...