A characterization of Gromov hyperbolicity of surfaces with variable negative curvature.
Let be a principal fiber bundle and an associated fiber bundle. Our interest is to study the harmonic sections of the projection of into . Our first purpose is give a characterization of harmonic sections of into regarding its equivariant lift. The second purpose is to show a version of a Liouville theorem for harmonic sections of .
In this paper we characterize the existence of Riemannian covering maps from a complete simply connected Riemannian manifold onto a complete Riemannian manifold in terms of developing geodesic triangles of onto . More precisely, we show that if is some isometric map between the tangent spaces and if for any two geodesic triangles , of based at the development through of the composite path onto results in a closed path based at , then there exists a Riemannian covering map...
Let Mⁿ be a hypersurface in . We prove that two classical Jacobi curvature operators and commute on Mⁿ, n > 2, for all orthonormal pairs (x,y) and for all points p ∈ M if and only if Mⁿ is a space of constant sectional curvature. Also we consider all hypersurfaces with n ≥ 4 satisfying the commutation relation , where , for all orthonormal tangent vectors x,y,z,w and for all points p ∈ M.
If is a manifold with a symmetric linear connection, then can be endowed with the natural Riemann extension (O. Kowalski and M. Sekizawa (2011), M. Sekizawa (1987)). Here we continue to study the harmonicity with respect to initiated by C. L. Bejan and O. Kowalski (2015). More precisely, we first construct a canonical almost para-complex structure on and prove that is harmonic (in the sense of E. García-Río, L. Vanhecke and M. E. Vázquez-Abal (1997)) if and only if reduces to the...
We give a characterization of totally -umbilical real hypersurfaces and ruled real hypersurfaces of a complex space form in terms of totally umbilical condition for the holomorphic distribution on real hypersurfaces. We prove that if the shape operator of a real hypersurface of a complex space form , , , satisfies for any , being a function, where is the holomorphic distribution on , then is a totally -umbilical real hypersurface or locally congruent to a ruled real hypersurface....
Let M3 be a three-dimensional almost Kenmotsu manifold satisfying ▽ξh = 0. In this paper, we prove that the curvature tensor of M3 is harmonic if and only if M3 is locally isometric to either the hyperbolic space ℍ3(-1) or the Riemannian product ℍ2(−4) × ℝ. This generalizes a recent result obtained by [Wang Y., Three-dimensional locally symmetric almost Kenmotsu manifolds, Ann. Polon. Math., 2016, 116, 79-86] and [Cho J.T., Local symmetry on almost Kenmotsu three-manifolds, Hokkaido Math. J., 2016,...