Loading [MathJax]/extensions/MathZoom.js
In this paper are determined all natural transformations of the natural bundle of -covelocities over -manifolds into such a linear natural bundle over -manifolds which is dual to the restriction of a linear bundle functor, if .
A classification of natural transformations transforming functions (or vector fields) to functions on such natural bundles which are restrictions of bundle functors is given.
A classification of natural transformations transforming vector fields on -manifolds into affinors on the extended -th order tangent bundle over -manifolds is given, provided .
The work concerns to investigations in the field of differential geometry. It is realized by a method of continuations and scopes of G. F. Laptev which generalizes a moving frame method and Cartan’s exterior forms method and depends on calculation of exterior differential forms. The Grassmann manifold (space of all -planes) is considered in the -dimensional projective space . Principal fiber bundle of tangent linear frames is arised above this manifold. Typical fiber of the principal fiber bundle...
In this paper, we deal with complete linear Weingarten hypersurfaces immersed in the hyperbolic space , that is, complete hypersurfaces of whose mean curvature and normalized scalar curvature satisfy for some , . In this setting, under appropriate restrictions on the mean curvature and on the norm of the traceless part of the second fundamental form, we prove that such a hypersurface must be either totally umbilical or isometric to a hyperbolic cylinder of . Furthermore, a rigidity result...
In this article, we present a mathematical model and numerical method for surface reconstruction from 3D point cloud data, using the level-set method. The presented method solves surface reconstruction by the computation of the distance function to the shape, represented by the point cloud, using the so called Fast Sweeping Method, and the solution of advection equation with curvature term, which creates the evolution of an initial condition to the final state. A crucial point for efficiency is...
We prove that a closed convex hypersurface of the Euclidean space with almost constant anisotropic first and second mean curvatures in the -sense is -close (up to rescaling and translations) to the Wulff shape. We also obtain characterizations of geodesic hyperspheres of space forms improving those of [Ro1] and [Ro].
Currently displaying 21 –
40 of
76