On the analyticity of minimal surfaces at movable boundaries of prescribed length.
In [O2] the Cartan-Norden theorem for real affine immersions was proved without the non-degeneracy assumption. A similar reasoning applies to the case of affine Kähler immersions with an anti-complex shape operator, which allows us to weaken the assumptions of the theorem given in [NP]. We need only require the immersion to have a non-vanishing type number everywhere on M.
We discuss some aspects of the composition structure of twisted Verma modules for the Lie algebra , including the explicit structure of singular vectors for both and one of its Lie subalgebras , and also of their generators. Our analysis is based on the use of partial Fourier tranform applied to the realization of twisted Verma modules as -modules on the Schubert cells in the full flag manifold for .