Les variétés filtrées
Yvon Bossard (1985)
Publications mathématiques et informatique de Rennes
Bronislaw Jakubczyk, Michail Zhitomirskii (2001)
Annales de l’institut Fourier
A differential 1-form on a -dimensional manifolds defines a singular contact structure if the set of points where the contact condition is not satisfied, , is nowhere dense in . Then is a hypersurface with singularities and the restriction of to can be defined. Our first theorem states that in the holomorphic, real-analytic, and smooth categories the germ of Pfaffian equation generated by is determined, up to a diffeomorphism, by its restriction to , if we eliminate certain degenerated singularities...
I. Lukačević (1975)
Publications de l'Institut Mathématique
Vladimir Berezovskij, Josef Mikeš (2004)
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
N. S. Sinyukov [5] introduced the concept of an almost geodesic mapping of a space with an affine connection without torsion onto and found three types: , and . The authors of [1] proved completness of that classification for .By definition, special types of mappings are characterized by equations where is the deformation tensor of affine connections of the spaces and .In this paper geometric objects which preserve these mappings are found and also closed classes of such spaces...
Pierre-Yvan Gal (1972)
Annales de l'I.H.P. Physique théorique
Lung Ock Chung, Leo Sario, Cecilia Wang (1975)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Josef Janyška (2018)
Czechoslovak Mathematical Journal
Starting by the famous paper by Kirillov, local Lie algebras of functions over smooth manifolds were studied very intensively by mathematicians and physicists. In the present paper we study local Lie algebras of pairs of functions which generate infinitesimal symmetries of almost-cosymplectic-contact structures of odd dimensional manifolds.
Izu Vaisman (1978)
Annales de l'I.H.P. Physique théorique
Bartolomé Coll (1976)
Annales de l'I.H.P. Physique théorique
Nicolas Puignau (2010)
Annales de l’institut Fourier
L’espace de module des applications stables vers l’espace projectif possède naturellement une structure réelle dont la partie réelle est une variété projective normale. Cette dernière est un espace de module pour les courbes spatiales rationnelles réelles avec des points marqués réels. Puisque le lieu singulier est de codimension au moins deux, une première classe de Stiefel-Whitney est bien définie. Dans cet article nous déterminons un représentant pour la première classe de Stiefel-Whitney dans...
Musso, Emilio, Nicolodi, Lorenzo (2009)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Fabio Cavalletti, Tapio Rajala (2016)
Analysis and Geometry in Metric Spaces
We study the existence of tangent lines, i.e. subsets of the tangent space isometric to the real line, in tangent spaces of metric spaces.We first revisit the almost everywhere metric differentiability of Lipschitz continuous curves. We then show that any blow-up done at a point of metric differentiability and of density one for the domain of the curve gives a tangent line. Metric differentiability enjoys a Borel measurability property and this will permit us to use it in the framework of Lipschitz...
Boris Kruglikov (2012)
Open Mathematics
Several examples of gaps (lacunes) between dimensions of maximal and submaximal symmetric models are considered, which include investigation of number of independent linear and quadratic integrals of metrics and counting the symmetries of geometric structures and differential equations. A general result clarifying this effect in the case when the structure is associated to a vector distribution, is proposed.
Adam Kowalczyk (1984)
Banach Center Publications
J. Eisenstaedt (1976)
Annales de l'I.H.P. Physique théorique
Jun-Muk Hwang (2013)
Annales scientifiques de l'École Normale Supérieure
Let be a uniruled projective manifold and let be a general point. The main result of [2] says that if the -degrees (i.e., the degrees with respect to the anti-canonical bundle of ) of all rational curves through are at least , then is a projective space. In this paper, we study the structure of when the -degrees of all rational curves through are at least . Our study uses the projective variety , called the VMRT at , defined as the union of tangent directions to the rational curves...
В.Л. Гуревич (1984)
Sibirskij matematiceskij zurnal
А.И. Егоров (1984)
Matematiceskij sbornik
М.А. Акивис, А.М. Шелехов (1971)
Sibirskij matematiceskij zurnal
М.А. Акивис (1976)
Sibirskij matematiceskij zurnal